The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre(ERT2) transgene in combination with β-catenin(fx(exon3)/wt) or β-catenin(fx/fx) floxed alleles, respectively.
View Article and Find Full Text PDFAxis inhibition proteins 1 and 2 (Axin1 and Axin2) are scaffolding proteins that modulate at least two signaling pathways that are crucial in skeletogenesis: the Wnt/beta-catenin and TGF-beta signaling pathways. To determine whether Axin2 is important in skeletogenesis, we examined the skeletal phenotype of Axin2-null mice in a wild-type or Axin1(+/-) background. Animals with disrupted Axin2 expression displayed a runt phenotype when compared to heterozygous littermates.
View Article and Find Full Text PDFChondrocyte maturation during endochondral bone formation is regulated by a number of signals that either promote or inhibit maturation. Among these, two well-studied signaling pathways play crucial roles in modulating chondrocyte maturation: transforming growth factor-beta (TGF-beta)/Smad3 signaling slows the rate of chondrocyte maturation, while Wingless/INT-1-related (Wnt)/beta-catenin signaling enhances the rate of chondrocyte maturation. Axin1 and Axin2 are functionally equivalent and have been shown to inhibit Wnt/beta-catenin signaling and stimulate TGF-beta signaling.
View Article and Find Full Text PDFAdapting to sinusoidal gratings selectively reduces contrast sensitivity to subsequent test stimuli. To investigate the perceptual processes underlying selective adaptation, we developed an external noise plus adaptation paradigm and a theoretical framework based on a noisy observer model (the contrast-gain-control Perceptual Template Model [cgcPTM]). After adapting to a 45 deg, 2-Hz counter-flickering sine grating of 0.
View Article and Find Full Text PDF