Background: The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the intramural periarterial drainage (IPAD) pathway.
Methods: Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG.
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer.
View Article and Find Full Text PDFPurpose: Breast cancer diagnosed in young patients is often aggressive. Because primary breast tumors from young and older patients have similar mutational patterns, we hypothesized that the young host microenvironment promotes more aggressive metastatic disease.
Experimental Design: Triple-negative or luminal B breast cancer cell lines were injected into young and older mice side-by-side to quantify lung, liver, and brain metastases.
Background: Brain metastases of HER2+ breast cancer persist as a clinical challenge. Many therapeutics directed at human epidermal growth factor receptor 2 (HER2) are antibodies or antibody-drug conjugates (ADCs), and their permeability through the blood-tumor barrier (BTB) is poorly understood. We investigated the efficacy of a biparatopic anti-HER2 antibody-tubulysin conjugate (bHER2-ATC) in preclinical models of brain metastases.
View Article and Find Full Text PDFHistone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C.
View Article and Find Full Text PDFWatanabe et al (Reports, 12 April 2013, p. 195) study the yeast SWR1/SWR-C complex responsible for depositing the histone variant H2A.Z by replacing nucleosomal H2A with H2A.
View Article and Find Full Text PDFNat Struct Mol Biol
April 2016
Histone variant H2A.Z, a universal mark of dynamic nucleosomes flanking gene promoters and enhancers, is incorporated into chromatin by SRCAP (SWR1), an ATP-dependent, multicomponent chromatin-remodeling complex. The YL1 (Swc2) subunit of SRCAP (SWR1) plays an essential role in H2A.
View Article and Find Full Text PDFThe histone variant H2A.Z is a universal mark of gene promoters, enhancers, and regulatory elements in eukaryotic chromatin. The chromatin remodeler SWR1 mediates site-specific incorporation of H2A.
View Article and Find Full Text PDFThe budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation.
View Article and Find Full Text PDFThe histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. Whereas the multisubunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.
View Article and Find Full Text PDFThe ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.
View Article and Find Full Text PDFThe molecular architecture of centromere-specific nucleosomes containing histone variant CenH3 is controversial. We have biochemically reconstituted two distinct populations of nucleosomes containing Saccharomyces cerevisiae CenH3 (Cse4). Reconstitution of octameric nucleosomes containing histones Cse4/H4/H2A/H2B is robust on noncentromere DNA, but inefficient on AT-rich centromere DNA.
View Article and Find Full Text PDFHistone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.
View Article and Find Full Text PDFVariant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity.
View Article and Find Full Text PDFThe human BRCA2 cancer susceptibility protein functions in double-strand DNA break repair by homologous recombination and this pathway is conserved in the fly Drosophila melanogaster. Although a potential Drosophila melanogaster BRCA2 orthologue (dmbrca2; CG30169) has been identified by sequence similarity, no functional data addressing the role of this protein in DNA repair is available. Here, we demonstrate that depletion of dmbrca2 from Drosophila cells induces sensitivity to DNA damage induced by irradiation or treatment with hydroxyurea.
View Article and Find Full Text PDFThe study of DNA double-strand break (DSB) repair has been greatly facilitated by the use of rare-cutting endonucleases, which induce a break precisely at their cut sites that can be strategically placed in the genome. We previously established such a system in Drosophila and showed that the yeast I-SceI enzyme cuts efficiently in Drosophila cells and those breaks are effectively repaired by conserved mechanisms. In this study, we determined the genetic requirements for the repair of this I-SceI-induced DSB in the germline.
View Article and Find Full Text PDFThe histone variant H2AZ is incorporated preferentially at specific locations in chromatin to modulate chromosome functions. In Saccharomyces cerevisiae, deposition of histone H2AZ is mediated by the multiprotein SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Here, we define interactions between SWR1 components and H2AZ, revealing a link between the ATPase domain of Swr1 and three subunits required for the binding of H2AZ.
View Article and Find Full Text PDF