The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides.
View Article and Find Full Text PDFThin film composite (TFC) hollow fiber membranes with ultrathin selective layer are desirable to maximize the gas permeance for practical applications. Herein, a bio-inspired strategy is proposed to fabricate sub-100-nm membranes via a tree-mimicking polymer network with amphipathic components featuring multifunctionalities. The hydrophobic polydimethylsiloxane (PDMS) brushes act as the roots that can strongly cling to the gutter layer, the PDMS crosslinkers function as the xylems to enable fast gas transport, and the hydrophilic ethylene-oxide moieties (brushes and mobile molecules) resemble tree leaves that selectively attract CO molecules.
View Article and Find Full Text PDFMica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwave synthesis of 2D mica with short reaction time and energy conservation.
View Article and Find Full Text PDFGraphene-like 2D coordination polymers (GCPs) have been of central research interest in recent decades with significant impact in many fields. According to classical coordination chemistry, Cu(II) can adopt the dsp hybridization to form square planar coordination geometry, but not Cu(I); this is why so far, there has been few 2D layered structures synthesized from Cu(I) precursors. Herein a pair of isostructural GCPs synthesized by the coordination of benzenehexathiol (BHT) ligands with Cu(I) and Cu(II) ions, respectively, is reported.
View Article and Find Full Text PDFHerein, we have successfully synthesized binary AgSe, composite Ag:AgSe, and ternary Cu:AgSe through an ambient aqueous-solution-based approach in a one-pot reaction at room temperature and atmospheric pressure without involving high-temperature heating, multiple-processes treatment, and organic solvents/surfactants. Effective controllability over phases and compositions/components are demonstrated with feasibility for large-scale production through an exquisite alteration in reaction parameters especially pH for enhancing and understanding thermoelectric properties. Thermoelectric reaches 0.
View Article and Find Full Text PDF