Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles.
View Article and Find Full Text PDFTumour-specific cytotoxic T-cells (CTL) are important anti-cancer immune effectors. Most tumour cells, however, do not stimulate effective anti-tumour immune responses, in vivo or in vitro. To enhance tumour cell immunogenicity, we fused human tumour cells from haematological malignancies with the B-lymphoblastoid cell line (LCL), HMy2, to generate a panel of long-lived, self replicating LCL/tumour hybrid cell lines.
View Article and Find Full Text PDFImmunotherapy may provide alternative or supplementary treatment of multiple myeloma (MM). We propose that hybrid cells, formed by fusing professional antigen-presenting cells with malignant plasma cells, would induce immune responses capable of mediating tumour regression. The human B-lymphoblastoid cell line, HMy2, was fused in vitro with CD138+ bead-separated myeloma plasma cells from five patients with MM.
View Article and Find Full Text PDFChronic graft-versus-host disease (cGVHD) is characterized by a state of profound immunodeficiency in association with alloreactive and autoimmune phenomena. These observations indicate an impairment of immunologic tolerance that could involve both central and peripheral mechanisms. Defective thymic function may contribute to dysregulation of central tolerance, but few studies have addressed peripheral tolerance.
View Article and Find Full Text PDFWe have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5'-GGA GGG TCG CAT CGC-3') as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5'-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells.
View Article and Find Full Text PDF