Publications by authors named "Debbie Clements"

Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a multisystem disease that causes lung cysts and respiratory failure. Loss of TSC (tuberous sclerosis complex) gene function results in a clone of "LAM cells" with dysregulated mTOR (mechanistic target of rapamycin) activity. LAM cells and fibroblasts form lung nodules that also contain mast cells, although their significance is unknown.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare multisystem disease with a variable clinical course. The lungs are infiltrated by nodules of LAM cells, stromal cells and inflammatory cells, causing lung cysts and respiratory failure. We used immunohistochemical markers in lung biopsy and transplant samples from a national cohort of women with LAM with linked clinical data to understand how LAM nodule cell populations changed with disease progression.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of extracellular matrix (ECM) proteins and fibroblast proliferation. ECM cross-linking enzymes have been implicated in fibrotic diseases, and we hypothesized that the ECM in IPF is abnormally cross-linked, which enhances fibroblast growth and resistance to normal ECM turnover. We used a combination of in vitro ECM preparations and in vivo assays to examine the expression of cross-linking enzymes and the effect of their inhibitors on fibroblast growth and ECM turnover.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001).

View Article and Find Full Text PDF

Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma.

Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity.

Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture.

View Article and Find Full Text PDF

Background: The Royal College of Physicians and Surgeons of Canada and the College of Family Physicians of Canada mandate that faculty members demonstrate they are evaluating residents on all CanMEDS (Canadian Medical Education Directions for Specialists) roles as part of the accreditation process. Postgraduate Medical Education at the University of Ottawa initiated a 5-year project to develop and implement a comprehensive system to assess the full spectrum of CanMEDS roles. This paper presents the findings from a needs assessment with Program Directors, in order to determine how postgraduate medical faculty can be motivated and supported to evaluate residents on the intrinsic CanMEDS roles.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare disease leading to lungs cysts and progressive respiratory failure. Cells of unknown origin accumulate in the lungs forming nodules and eventually resulting in lung cysts. These LAM cells are described as clonal with bi-allelic mutations in TSC-2 resulting in constitutive mTOR activation.

View Article and Find Full Text PDF

Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a progressive disease caused by accumulation of metastatic (LAM) cells in the lungs, lymphatics, and the tumor angiomyolipoma (AML). LAM cells have biallelic loss of either tuberous sclerosis complex gene (but predominantly TSC-2) and resultant dysregulation of the mammalian target of rapamycin (mTOR) pathway. Chemokines are associated with neoplastic cell growth, survival, and homing to specific organs and may play similar roles in LAM.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) have been implicated in lung cyst formation in lymphangioleiomyomatosis (LAM). As doxycycline inhibits MMP activity in vivo, some patients take doxycycline, as one report has suggested a possible benefit in LAM. However, there have been no randomized controlled clinical trials of doxycycline for LAM, and any mechanism of action is unclear.

View Article and Find Full Text PDF

Angiomyolipomas are benign mesenchymal tumours of smooth muscle, blood vessels and fat which occur sporadically or associated with tuberous sclerosis and lymphangioleiomyomatosis (LAM), a rare cystic lung disease. Angiomyolipoma and LAM are caused by loss of function of either the tuberous sclerosis-1 or -2 genes resulting in activation of p70S6kinase (S6K1) and uncontrolled cellular proliferation. LAM and angiomyolipoma can be exacerbated by oestrogens but how this occurs is not understood.

View Article and Find Full Text PDF

A comprehensive Arabidopsis genomic resource has been developed at the Nottingham Arabidopsis Stock Centre (NASC) to support the international plant community. This browser, termed AtEnsembl, provides a detailed and user-friendly interface for accessing a wide range of Arabidopsis-based genomic information and post-genomic resources using the Ensembl browser. The resource aims to provide the broadest possible range of Ensembl features, including pointers to germplasm as well as representations of gene and protein information, links to Affymetrix gene expression data, and extensive data download capabilities.

View Article and Find Full Text PDF

The gene encoding the Sox F-group transcription factor Xsox17alpha(1) is specifically expressed throughout the entire region of the Xenopus blastula fated to become endoderm, and is important in controlling endodermal development. Xsox17alpha(1) is a direct target of the maternal endodermal determinant VegT and of Sox17 itself. We have analysed the promoter of the Xenopus laevis Xsox17alpha(1) gene by transgenesis, and have identified two important control elements which reside about 9 kb upstream at the start of transcription.

View Article and Find Full Text PDF

The products of the tuberous sclerosis complex (TSC) genes, hamartin and tuberin (TSC1 and 2), form a heteromer, which represses the kinase mammalian target of rapamycin. Loss of TSC1 or 2 results in diseases characterized by loss of cell-cycle control, including TSC and lymphangioleiomyomatosis. As tuberin has multiple signaling inputs, including phosphatidylinositide-3-OH kinase, mitogen-activated protein kinase, and adenosine monophosphate kinase, we postulated tuberin would have multiple protein interactions governed by subcellular localization and cellular status and examined this in primary human airway smooth muscle cells.

View Article and Find Full Text PDF

The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited.

View Article and Find Full Text PDF

We have used antisense morpholino oligos to establish the developmental roles of three Xsox17 proteins in Xenopus development (Xsox17alpha(1), alpha(2) and beta). We show that their synthesis can be inhibited with modest amounts of oligo. The inhibition of each individually produces defects in late midgut development.

View Article and Find Full Text PDF