In this Letter, we introduce an inline model for stimulated Raman scattering (SRS), which runs on our radiation hydrodynamics code troll. This model accounts for nonlinear kinetic effects and for the SRS feedback on the plasma hydrodynamics. We dubbed it PIEM because it is a fully "PredIctivE Model," because no free parameter is to be adjusted a posteriori in order to match the experimental results.
View Article and Find Full Text PDFWe derive the analytical dispersion relation of a high-energy laser beam's backward stimulated Brillouin scattering (BSBS) in a hot plasma, that accounts both for the random phase plate (RPP) induced spatial shaping and its associated phase randomness. Indeed, phase plates are mandatory in large laser facilities where a precise control of the focal spot size is required. While the focal spot size is well controlled, such techniques produce small scale intensity variations that can trigger laser-plasma instabilities such as BSBS.
View Article and Find Full Text PDFInvestigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ.
View Article and Find Full Text PDFRelativistic interactions between ultraintense (>10^{18} W cm^{-2}) laser pulses and magnetized underdense plasmas are known to produce few-cycle Cerenkov wake radiation in the terahertz (THz) domain. Using multidimensional particle-in-cell simulations, we demonstrate the possibility of generating high-field (>100 GV m^{-1}) THz bursts from helium gas plasmas embedded in strong (>100 T) magnetic fields perpendicular to the laser path. We show that two criteria must be satisfied for efficient THz generation.
View Article and Find Full Text PDFIn this Letter, we show that cross-beam energy transfer (CBET), ubiquitous in inertial confinement fusion (ICF) experiments, may be strongly modified by the speckle pattern of the beams. This is demonstrated by the means of two-dimensional particle in cell simulations, supported by a linear model. In particular, we show that, although they would be the same in a plane wave model, the exchange rates of energy may be significantly different whether there is a plasma flow, or a wavelength shift, especially when the waves are weakly damped.
View Article and Find Full Text PDFTerahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>10^{19} W/cm^{2}) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV/m and energy in excess of 10 mJ.
View Article and Find Full Text PDFExperiments have been performed evidencing significant stimulated Raman sidescattering (SRS) at large angles from the density gradient. This was achieved in long scale-length high-temperature plasmas in which two beams couple to the same scattered electromagnetic wave further demonstrating for the first time this multiple-beam collective SRS interaction. The collective nature of the coupling and the amplification at large angles from the density gradient increase the global SRS losses and produce light scattered in novel directions out of the planes of incidence of the beams.
View Article and Find Full Text PDFAmplification of a picosecond pulse beam by a lower intensity nanosecond pulse beam was experimentally observed in a flowing plasma. Modifications of intensity distributions in beam focal spots due to nonhomogeneous energy transfer and its transient regime were investigated. The mean transferred power reached 57% of the incident power of the nanosecond pulse beam.
View Article and Find Full Text PDFWe numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2015
We present a self-consistent semianalytical model of the relativistic plasma mirror, based on the exact computation of the laser-driven electron surface oscillations within the cold-fluid approximation. Valid for arbitrary solid densities, laser incidence angle, and a large set of laser intensities (10(18)-10(21) W/cm(2)), the model unravels different regimes of harmonic generation. In particular, it is found that efficient conversion of p-polarized laser pulses into high-order harmonics well above the plasma frequency requires either high laser intensities, low plasma densities, or incidence angles larger than a threshold value.
View Article and Find Full Text PDFPhys Rev Lett
November 2015
We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets.
View Article and Find Full Text PDFEnergy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport.
View Article and Find Full Text PDFWe develop a one-dimensional model of THz emissions induced by laser-driven, time-asymmetric ionization and current oscillations in a hydrogen gas. Our model highlights complex scalings of the THz fields with respect to the laser and gas parameters, in particular, a non-monotonic behavior against the laser parameters. Analytical expressions of the transmitted and reflected fields are presented, explaining the THz spectra observed in particle-in-cell and forward-pulse propagation codes.
View Article and Find Full Text PDFWe present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2012
An analytical study of the relativistic interaction of a linearly polarized laser field of ω frequency with highly overdense plasma is presented. In agreement with one-dimensional particle-in-cell simulations, the model self-consistently explains the transition between the sheath inverse bremsstrahlung absorption regime and the J×B heating (responsible for the 2ω electron bunches), as well as the high harmonic radiations and the mean electron energy.
View Article and Find Full Text PDFFast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven electrical resistivity gradients induce strong magnetic fields able to guide the electrons.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2008
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2007
Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets.
View Article and Find Full Text PDFThe transport of an intense electron beam produced by ultrahigh intensity laser pulses through metals and insulators has been studied by high resolution imaging of the optical emission from the targets. In metals, the emission is mainly due to coherent transition radiation, while in plastic, it is due to the Cerenkov effect and it is orders of magnitude larger. It is also observed that in the case of insulators the fast-electron beam undergoes strong filamentation and the number of filaments increases with the target thickness.
View Article and Find Full Text PDF