Publications by authors named "Debayan Das"

We study the interaction of a laser cavity-soliton microcomb with an externally coupled, co-propagating tunable CW pump, observing parametric Kerr interactions which lead to the formation of both a cross-phase modulation and a four-wave mixing replica of the laser cavity-soliton. We compare and explain the dependence of the microcomb spectra from both the cavity-soliton and pump parameters, demonstrating the ability to adjust the microcomb externally without breaking or interfering with the soliton state. The parametric nature of the process agrees with numerical simulations.

View Article and Find Full Text PDF

The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work presents the development and characterization of a Miniaturized Optically-clear Thermal Enclosure (MOTE) system-an open-source, inexpensive, and low-powered modular system-capable of convectively heating samples while simultaneously imaging them with transmitted light.

View Article and Find Full Text PDF

Laser cavity-soliton microcombs are robust optical pulsed sources, usually implemented with a microresonator-filtered fibre laser. In such a configuration, a nonlinear microcavity converts the narrowband pulse resulting from bandwidth-limited amplification to a background-free broadband microcomb. Here, we theoretically and experimentally study the soliton conversion efficiency between the narrowband input pulse and the two outputs of a four-port integrated microcavity, namely the 'Drop' and 'Through' ports.

View Article and Find Full Text PDF

Lateral flow assays and paper microfluidics have the potential to replace benchtop instrumented medical diagnostic systems with instrument-free systems that rely on passive transport of liquid through micro-porous paper substrates. Predicting the imbibition dynamics of liquid through dry paper substrates is mostly modeled through the Lucas-Washburn (LW) equations. However, the LW framework assumes that the fluid front exhibits a sharp boundary between the dry and wet phases across the liquid imbibition interface.

View Article and Find Full Text PDF

A highly sensitive refractive index sensor is proposed by using the resonant coupling of a Tamm state to a Fabry-Perot resonance in slits periodically pierced in a metal film. This new hybrid resonance exists at the interface between a dielectric Bragg mirror and a subwavelength metal grating. Contrary to a classic Tamm plasmon, it is sensitive to the ambient media refractive index due to its confinement inside the grating slits.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification or LAMP has been identified to be an efficient technology for point-of-care diagnostics. Paper-based LAMP technique has tremendous potential in replacing the existing tube-based technology as the manufacturing cost of a paper-based device is comparatively lower and easy-to-use. LAMP-based paper diagnostic device for Mycobacterium tuberculosis (MTB) detection is of extreme importance as it will help in early and rapid diagnosis of the affected patients.

View Article and Find Full Text PDF

Spatially uniform reconstitution of dried reagents is critical to the function of paper microfluidic devices. Advancing fluid fronts in paper microfluidic devices drive (convect) and concentrate rehydrated reagents to the edges, causing steep chemical gradients and imperfect mixing. This largely unsolved problem in paper microfluidics is exacerbated by increasing device dimensions.

View Article and Find Full Text PDF

Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality. However, owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. In this context, the human body, primarily due to its high water content, has emerged as a medium for low-loss transmission, termed human body communication (HBC), enabling energy-efficient means for wearable communication.

View Article and Find Full Text PDF

In this emerging data-driven world, secure and ubiquitous authentication mechanisms are necessary prior to any confidential information delivery. Biometric authentication has been widely adopted as it provides a unique and non-transferable solution for user authentication. In this article, the authors envision the need for an infield, remote and on-demand authentication system for a highly mobile and tactical environment, such as critical information delivery to soldiers in a battlefield.

View Article and Find Full Text PDF

Human Body Communication (HBC) has recently emerged as an alternative to radio frequency transmission for connecting devices on and in the human body with order(s) of magnitude lower energy. The communication between these devices can give rise to different scenarios, which can be classified as wearable-wearable, wearable-machine, machine-machine interactions. In this paper, for the first time, the human body channel characteristics is measured for a wide range of such possible scenarios (14 vs.

View Article and Find Full Text PDF

Human body communication (HBC) has emerged as an alternative to radio wave communication for connecting low power, miniaturized wearable, and implantable devices in, on, and around the human body. HBC uses the human body as the communication channel between on-body devices. Previous studies characterizing the human body channel has reported widely varying channel response much of which has been attributed to the variation in measurement setup.

View Article and Find Full Text PDF

Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission.

View Article and Find Full Text PDF