Publications by authors named "Debayan Bhattacharya"

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system that can flag missed polyps during the examination and improve patient care.

View Article and Find Full Text PDF

Purpose: Commonly employed in polyp segmentation, single-image UNet architectures lack the temporal insight clinicians gain from video data in diagnosing polyps. To mirror clinical practices more faithfully, our proposed solution, PolypNextLSTM, leverages video-based deep learning, harnessing temporal information for superior segmentation performance with least parameter overhead, making it possibly suitable for edge devices.

Methods: PolypNextLSTM employs a UNet-like structure with ConvNext-Tiny as its backbone, strategically omitting the last two layers to reduce parameter overhead.

View Article and Find Full Text PDF

Purpose: Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled data.

View Article and Find Full Text PDF

Objective: Computer aided diagnostics (CAD) systems can automate the differentiation of maxillary sinus (MS) with and without opacification, simplifying the typically laborious process and aiding in clinical insight discovery within large cohorts.

Methods: This study uses Hamburg City Health Study (HCHS) a large, prospective, long-term, population-based cohort study of participants between 45 and 74 years of age. We develop a CAD system using an ensemble of 3D Convolutional Neural Network (CNN) to analyze cranial MRIs, distinguishing MS with opacifications (polyps, cysts, mucosal thickening) from MS without opacifications.

View Article and Find Full Text PDF

Needle positioning is essential for various medical applications such as epidural anaesthesia. Physicians rely on their instincts while navigating the needle in epidural spaces. Thereby, identifying the tissue structures may be helpful to the physician as they can provide additional feedback in the needle insertion process.

View Article and Find Full Text PDF

Scour phenomena remain a significant cause of instability in offshore structures. The present study estimates scour depths using physics-based numerical modelling and machine-learning (ML) algorithms. For the ML prediction, datasets were collected from previous studies, and the trained models checked against the statistical measures and reported outcomes.

View Article and Find Full Text PDF

Purpose: Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time.

View Article and Find Full Text PDF

Lung cancer is a serious disease responsible for millions of deaths every year. Early stages of lung cancer can be manifested in pulmonary lung nodules. To assist radiologists in reducing the number of overseen nodules and to increase the detection accuracy in general, automatic detection algorithms have been proposed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfnv5nosesg3k63i00rmvsv709b3ddmm0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once