Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT).
View Article and Find Full Text PDFBackground And Aims: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied.
Approach And Results: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9).
The rapid increase in the incidence of obesity contributes to a parallel increase in nonalcoholic steatohepatitis (NASH). Monocyte-derived macrophages, recruited from the bone marrow to the liver, promote NASH-related inflammation and fibrosis. In addition, adipose tissue macrophages (ATMs) release pro-inflammatory cytokines (PICs) which stimulate adipose tissue lipolysis liberating free fatty acids (FFAs) that can accumulate in the liver as triglycerides (TGs), thereby inducing steatosis.
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is characterized by accumulation of lipids in the hepatocytes (steatosis) and chronic inflammation. Liver resident macrophages (Kupffer cells) play a pivotal role in inducing inflammation. Cross-talk between hepatocytes and Kupffer cells (KCs) regulate both steatosis and inflammation during the pathogenesis of NASH.
View Article and Find Full Text PDFObesity is an enormous global health problem, and obesity-induced nonalcoholic steatohepatitis (NASH) is contributing to a rising incidence and mortality for hepatocellular carcinoma (HCC). Increase in de novo lipogenesis and decrease in fatty acid β-oxidation (FAO) underlie hepatic lipid accumulation in NASH. Astrocyte-elevated gene-1/metadherin (AEG-1) overexpression contributes to both NASH and HCC.
View Article and Find Full Text PDFCancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC), the primary liver cancer arising from hepatocytes, is a universal health problem and one of the most common malignant tumors. Surgery followed by chemotherapy as well as tyrosine kinase inhibitors (TKIs), such as sorafenib, are primary treatment procedures for HCC, but recurrence of disease because of therapy resistance results in high mortality. It is necessary to identify novel regulators of HCC for developing effective targeted therapies that can significantly interfere with progression of the disease process.
View Article and Find Full Text PDFAntitumor potential of a 1,4-dihydropyridine derivative (DHP-8) has been successfully studied previously in a number of cancer cell lines including the human melanoma cells, A375. In order to validate its anticancer activity, DMBA induced tumor in Swiss Albino mice was considered for this study. DMBA causes skin carcinoma in murine systems and is an important in vivo model for evaluating the efficacy of any new chemical entity against skin cancer.
View Article and Find Full Text PDFThe NAD-dependent deacetylase SIRT1 plays important roles in several physiological processes such as transcription, genome stability, stress responses, and aging. Due to its diverse role in metabolisms, SIRT1 has emerged as a potential therapeutic target in many human disorders such as type II diabetes, cardiovascular and neurodegenerative diseases, and cancer. Recent studies have reported that modulation of SIRT1 activity by phenolic activators like resveratrol and some 1,4-dihydropyridines (1,4-DHPs) can inhibit tumor growth by promoting apoptosis in cancer cells.
View Article and Find Full Text PDF1,4-Dihydropyridines (1,4-DHPs) are important as a class of heterocyclic compounds that exhibit wide range of biological actions. Many of its derivatives are already characterized as medicinally important drugs and used worldwide. In this study, we have screened some novel Hantzsch 1,4-DHP compounds using both in silico (QSAR and Pharmacophore) and in vitro (cytotoxic screening).
View Article and Find Full Text PDFElectromagn Biol Med
February 2017
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health.
View Article and Find Full Text PDF