Publications by authors named "Debarun Acharya"

Phthalic acid esters (PAEs), the pervasive and ubiquitous endocrine-disrupting chemicals of environmental concern, generated annually on a million-ton scale, are primarily employed as plasticisers in the production of a variety of plastic products and as additives in a large number of commercial supplies. The increased awareness of various adverse effects on the ecosystem and human health including reproductive and developmental disorders has led to a striking increase in research interest aimed at managing these man-made oestrogenic chemicals. In these circumstances, microbial metabolism appeared as the major realistic process to neutralise the toxic burdens of PAEs in an ecologically accepted manner.

View Article and Find Full Text PDF

Aims: The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota.

View Article and Find Full Text PDF

Unlabelled: Gene and genome duplications have been widespread during the evolution of flowering plant which resulted in the increment of biological complexity as well as creation of plasticity of a genome helping the species to adapt to changing environments. Duplicated genes with higher evolutionary rates can act as a mechanism of generating novel functions in secondary metabolism. In this study, we explored duplication as a potential factor governing the expression heterogeneity and gene architecture of Primary Metabolic Genes (PMGs) and Secondary Metabolic Genes (SMGs) of .

View Article and Find Full Text PDF

Host-pathogen interaction is one of the most powerful determinants involved in coevolutionary processes covering a broad range of biological phenomena at molecular, cellular, organismal and/or population level. The present study explored host-pathogen interaction from the perspective of human-bacteria protein-protein interaction based on large-scale interspecific and intraspecific interactome data for human and three pathogenic bacterial species, Bacillus anthracis, Francisella tularensis and Yersinia pestis. The network features revealed a preferential enrichment of intraspecific hubs and bottlenecks for both human and bacterial pathogens in the interspecific human-bacteria interaction.

View Article and Find Full Text PDF

Chaperones are important molecular machinery that assists proteins to attain their native three-dimensional structure crucial for function. Earlier studies using experimental evolution showed that chaperones impose a relaxation of sequence constraints on their "client" proteins, which may lead to the fixation of slightly deleterious mutations on the latter. However, we hypothesized that such a phenomenon might be harmful to the organism in a natural physiological condition.

View Article and Find Full Text PDF

Codon usage bias is an important genomic phenomenon, where highly expressed genes use optimal codons for smoother translation with high yield, facilitated by the cognate tRNAs. Here, we presented the tRNA co-adaptation index (co-AI) by correlating tRNA gene copy number and codon composition in Saccharomyces cerevisiae. We observed that this co-AI is positively correlated with protein abundance and translation rate.

View Article and Find Full Text PDF

Codon usage bias (CUB) and mRNA structural stability are important intrinsic features of mRNA that correlate positively with mRNA expression level. However, it remains unclear whether the mRNA expression level can be regulated by adjusting these two parameters, influencing the mRNAs' structure. Here we explored the influence of CUB and mRNA structural stability on mRNA expression levels in Saccharomyces cerevisiae, using both wild type and computationally mutated mRNAs.

View Article and Find Full Text PDF

In Arabidopsis thaliana, primary metabolic genes (PMGs) are more evolutionarily conserved and intron-rich than secondary metabolic genes. We observed that PMGs are more primitive and pan-taxonomically persistent as compared to secondary (SMGs) and non-metabolic genes (NMGs). This difference in primitiveness and persistence is primarily correlated with intron number and is independent of gene expression level.

View Article and Find Full Text PDF

Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs. Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and observed that this difference is present only in TS, but not in HK-class.

View Article and Find Full Text PDF

Expression level provides important clues about gene function. Previously, various efforts have been undertaken to profile human genes according to their expression level. Intrinsically disordered proteins (IDPs) do not adopt any rigid conformation under physiological conditions, however, are considered as an important functional class in all domains of life.

View Article and Find Full Text PDF

Background: Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes.

View Article and Find Full Text PDF

Gene duplication is one of the major driving forces shaping genome and organism evolution and thought to be itself regulated by some intrinsic properties of the gene. Comparing the essential genes among mouse and human, we observed that the essential genes avoid duplication in mouse while prefer to remain duplicated in humans. In this study, we wanted to explore the reasons behind such differences in gene essentiality by cross-species comparison of human and mouse.

View Article and Find Full Text PDF