Publications by authors named "Debarghya Dutta Banik"

Article Synopsis
  • During neurogenesis, an initially excessive number of neurons are formed in the nervous system, but many are later eliminated through a process called apoptosis, or programmed cell death.
  • This elimination is influenced by targets of innervation, which produce neurotrophic factors that help maturing neurons survive and grow as they connect with these targets.
  • Research in mice shows that while neurogenesis and apoptosis typically complete within the first few days after birth, both processes continue significantly longer, indicating neurogenesis may play a role in replacing neurons lost during synaptic refinement.
View Article and Find Full Text PDF

The sense of taste starts with activation of receptor cells in taste buds by chemical stimuli which then communicate this signal via innervating oral sensory neurons to the CNS. The cell bodies of oral sensory neurons reside in the geniculate ganglion (GG) and nodose/petrosal/jugular ganglion. The geniculate ganglion contains two main neuronal populations: BRN3A+ somatosensory neurons that innervate the pinna and PHOX2B+ sensory neurons that innervate the oral cavity.

View Article and Find Full Text PDF

Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IPR1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour.

View Article and Find Full Text PDF

All organisms have the ability to detect chemicals in the environment, which likely evolved out of organisms' needs to detect food sources and avoid potentially harmful compounds. The taste system detects chemicals and is used to determine whether potential food items will be ingested or rejected. The sense of taste detects five known taste qualities: bitter, sweet, salty, sour, and umami, which is the detection of amino acids, specifically glutamate.

View Article and Find Full Text PDF

Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami.

View Article and Find Full Text PDF

Objective: Previous studies have reported that individuals with obesity have reduced taste perception, but the relationship between obesity and taste is poorly understood. Earlier work has demonstrated that diet-induced obesity directly impairs taste. Currently, it is not clear whether these changes to taste are due to obesity or to the high-fat diet exposure.

View Article and Find Full Text PDF

WT1 is a transcriptional activator that controls the boundary between multipotency and differentiation. The transcriptional cofactor BASP1 binds to WT1, forming a transcriptional repressor complex that drives differentiation in cultured cells; however, this proposed mechanism has not been demonstrated in vivo. We used the peripheral taste system as a model to determine how BASP1 regulates the function of WT1.

View Article and Find Full Text PDF

Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. Transient receptor potential melastatin 5 (TRPM5), a sodium-selective TRP channel, functions as a common downstream component in sweet, bitter, and umami signaling pathways. In the absence of TRPM5, mice have a reduced, but not abolished, ability to detect stimuli, suggesting that a TRPM5-independent pathway also contributes to these signals.

View Article and Find Full Text PDF