Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%).
View Article and Find Full Text PDFBacteriophages (phages) are increasingly considered for both treatment and early detection of bacterial pathogens given their specificity and rapid infection kinetics. Here, we exploit an engineered phage expressing nanoluciferase to detect signals associated with lysis spanning single cells to populations. Using several strains we found that the latent period, burst size, fraction of infected cells, and efficiency of plating inferred from fluorescent light intensity signals were consistent with inferences from conventional population assays.
View Article and Find Full Text PDFBacteriophage (or 'phage' - viruses that infect and kill bacteria) are increasingly considered as a therapeutic alternative to treat antibiotic-resistant bacterial infections. However, bacteria can evolve resistance to phage, presenting a significant challenge to the near- and long-term success of phage therapeutics. Application of mixtures of multiple phage (i.
View Article and Find Full Text PDFThe human gut virome, which is mainly composed of bacteriophages, also includes viruses infecting archaea, yet their role remains poorly understood due to lack of isolates. Here, we characterize a temperate archaeal virus (MSTV1) infecting Methanobrevibacter smithii, the dominant methanogenic archaeon of the human gut. The MSTV1 genome is integrated in the host chromosome as a provirus which is sporadically induced, resulting in virion release.
View Article and Find Full Text PDFUnlabelled: Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions .
View Article and Find Full Text PDFThe ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed protein, YfaL, which can self-recognize and induce bacterial autoaggregation.
View Article and Find Full Text PDFLipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.
View Article and Find Full Text PDFTwo bacteriophages (phages) of were isolated from sewage water collected from Dakar, Senegal. Phage vKpIN17 belongs to the genus within the family, with double-stranded DNA genomes, whereas vKpIN18 belongs to the genus of the family.
View Article and Find Full Text PDFInfections caused by multi-drug resistant (MDR) pathogenic bacteria are a global health threat. Phage therapy, which uses phage to kill bacterial pathogens, is increasingly used to treat patients infected by MDR bacteria. However, the therapeutic outcome of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions .
View Article and Find Full Text PDFThe rise of antimicrobial resistance has led to renewed interest in evaluating phage therapy. In murine models highly effective treatment of acute pneumonia caused by relies on the synergistic antibacterial activity of bacteriophages with neutrophils. Here, we show that depletion of alveolar macrophages (AM) shortens the survival of mice without boosting the .
View Article and Find Full Text PDFGut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host.
View Article and Find Full Text PDFBackground: Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered.
View Article and Find Full Text PDFPhage therapy of ventilator-associated pneumonia (VAP) is of great interest due to the rising incidence of multidrug-resistant bacterial pathogens. However, natural or therapy-induced immunity against therapeutic phages remains a potential concern. In this study, we investigated the innate and adaptive immune responses to two different phage cocktails targeting either or -two VAP-associated pathogens-in naïve mice without the confounding effects of a bacterial infection.
View Article and Find Full Text PDFFor decades, biomedically centered studies of bacteria have focused on mechanistic drivers of disease in their mammalian hosts. Likewise, molecular studies of bacteriophage have centered on understanding mechanisms by which bacteriophage exploit the intracellular environment of their bacterial hosts. These binary interactions - bacteriophage infect bacteria and bacteria infect eukaryotic hosts - have remained largely separate lines of inquiry.
View Article and Find Full Text PDFMulti-drug-resistant bacteria are associated with significantly higher morbidity and mortality. The possibilities for discovering new antibiotics are limited, but phage therapy - the use of bacteriophages (viruses infecting bacteria) to cure infections - is now being investigated as an alternative or complementary treatment to antibiotics. However, one of the major limitations of this approach lies in the antagonistic coevolution between bacteria and bacteriophages, which determines the ultimate success or failure of phage therapy.
View Article and Find Full Text PDFBacteria developing resistance compromise the efficacy of antibiotics or bacteriophages (phages). We tested the association of these two antibacterials to circumvent resistance. With the Hollow Fiber Infection Model (HFIM), we mimicked the concentration profile of ciprofloxacin in the lungs of patients treated orally for Pseudomonas aeruginosa infections and, independently, mimicked a single inhaled administration of phages (one or two phages).
View Article and Find Full Text PDFThe clinical (re)development of bacteriophage (phage) therapy to treat antibiotic-resistant infections faces the challenge of understanding the dynamics of phage-bacteria interactions in the in vivo context. Here, we develop a general strategy coupling in vitro and in vivo experiments with a mathematical model to characterize the interplay between phage and bacteria during pneumonia induced by a pathogenic strain of Escherichia coli. The model allows the estimation of several key parameters for phage therapeutic efficacy.
View Article and Find Full Text PDFMucosal surfaces in contact with the environment host specific microbiota. The intestinal tract harbours the most abundant and diverse bacterial and viral populations interacting with each other as well as with the host. Viruses of the microbiota are important components of this ecosystem, as shown by viral alterations associated with various pathologies.
View Article and Find Full Text PDF