We report the discovery and optimization of aryl piperidinone urea formyl peptide receptor 2 (FPR2) agonists from a weakly active high-throughput screening (HTS) hit to potent and selective agonists with favorable efficacy in acute models. A basis for the selectivity for FPR2 over FPR1 is proposed based on docking molecules into recently reported FPR2 and FPR1 cryoEM structures. Compounds from the new scaffold reported in this study exhibited superior potency and selectivity and favorable ADME profiles.
View Article and Find Full Text PDFThe toll-like receptors (TLRs) play key roles in activation of the innate immune system. Aberrant activation of TLR7 and TLR8 pathways can occur in the context of autoimmune disorders due to the elevated presence and recognition of self-RNA as activating ligands. Control of this unintended activation via inhibition of TLR7/8 signaling holds promise for the treatment of diseases such as psoriasis, arthritis, and lupus.
View Article and Find Full Text PDFThe discovery of a pan-genotypic hepatitis C virus (HCV) NS3/4A protease inhibitor based on a P1-P3 macrocyclic tripeptide motif is described. The all-carbon tether linking the P1-P3 subsites of is functionalized with alkyl substituents, which are shown to effectively modulate both potency and absorption, distribution, metabolism, and excretion (ADME) properties. The CFBoc-group that caps the P3 amino moiety was discovered to be an essential contributor to metabolic stability, while positioning a methyl group at the C1 position of the P1' cyclopropyl ring enhanced plasma trough values following oral administration to rats.
View Article and Find Full Text PDFThe toll-like receptor (TLR) family is an evolutionarily conserved component of the innate immune system, responsible for the early detection of foreign or endogenous threat signals. In the context of autoimmunity, the unintended recognition of self-motifs as foreign promotes initiation or propagation of disease. Overactivation of TLR7 and TLR9 have been implicated as factors contributing to autoimmune disorders such as psoriasis, arthritis, and lupus.
View Article and Find Full Text PDFProteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways.
View Article and Find Full Text PDFIn recent years, the biological sciences have seen a surge in the development of methods, including high-throughput global methods, for the quantitative measurement of biomolecule levels (i.e., RNA, proteins, metabolites) from cells and tissues.
View Article and Find Full Text PDFProlyl endopeptidase (Prep) is a member of the prolyl peptidase family and is of interest because of its unique biochemistry and connections to cognitive function. Using an unbiased mass spectrometry (MS)-based peptidomics platform, we identified Prep-regulated peptides in the central nervous system (CNS) of mice by measuring changes in the peptidome as a function of Prep activity. This approach was validated by the identification of known Prep substrates, such as the neuropeptide substance P and thymosin-beta4, the precursor to the bioactive peptide Ac-SDKP.
View Article and Find Full Text PDFA supramolecular assembly containing an isoguanosine pentaplex with both a "protein-binding" face and a "reporter" face has been generated. When phosphocholine is appended to the protein-binding face this supramolecular assembly binds multivalently to the pentameric human C-reactive protein, a biomolecule implicated in inflammation and heart disease.
View Article and Find Full Text PDFPeptide metabolism is a complex process that involves many proteins working in concert. Mass spectrometry-based global peptide profiling of mice lacking dipeptidyl peptidase 4 (DPP4) identified endogenous DPP4 substrates and revealed an unrecognized pathway during proline peptide catabolism that interlinks aminopeptidase and DPP4 activities. Together, these studies elucidate specific aspects of DPP4-regulated metabolism and, more generally, highlight the utility of global peptide profiling for studying peptide metabolism in vivo.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2005
A library of bidentate fragments linked through an oligonucleotide duplex was tested for binding to streptavidin. When one fragment was biotin, only biotin-containing duplexes were selected by streptavidin but when heated above the melting temperature, only bidentate biotin ligands were obtained. Thermal denaturation experiments showed that the melting temperature, thus stability, of the monodentate versus bidentate binding ligand increased from 59 to 71 degrees C in the presence of streptavidin.
View Article and Find Full Text PDF