Publications by authors named "Debanjana Majumdar"

CTG repeat expansion (CTG) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTG repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis.

View Article and Find Full Text PDF

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing.

View Article and Find Full Text PDF

Diabetic neuropathy (DN) is among the most debilitating complications of diabetes. Here, we investigated the effects of human dental pulp stem cell (DPSC) transplantation in Streptozotocin (STZ)-induced neuropathic rats. Six weeks after STZ injection, DPSCs were transplanted through two routes, intravenous (IV) or intramuscular (IM), in single or two repeat doses.

View Article and Find Full Text PDF

Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels].

View Article and Find Full Text PDF

Dental pulp originating from the neural crest is considered a better source of postnatal stem cells for cell-based therapies in neurodegenerative diseases. Dental Pulp Stem Cells (DPSCs) have been shown to differentiate into cell-types of cranial neural crest ontology; however, their ability to differentiate to functional neurons of the central nervous system remains to be studied. We hypothesized that midbrain cues might commit DPSCs to differentiate to functional dopaminergic cell-type.

View Article and Find Full Text PDF