Publications by authors named "Debanjan Tewari"

Voltage-gated potassium (Kv) channels are integral to cellular excitability, impacting the resting membrane potential, repolarization, and shaping action potentials in neurons and cardiac myocytes. Structurally, Kv channels are homo or heterotetramers comprising four α-subunits, each with six transmembrane segments (S1-S6). Silent Kv (KvS), includes Kv5.

View Article and Find Full Text PDF

Ion channels of the cyclic nucleotide-binding domain (CNBD) family play a crucial role in the regulation of key biological processes, such as photoreception and pacemaking activity in the heart. These channels exhibit high sequence and structural similarity but differ greatly in their functional responses to membrane potential. The CNBD family includes hyperpolarization-activated ion channels and depolarization-activated ether-à-go-go channels.

View Article and Find Full Text PDF

In contrast to most voltage-gated ion channels, hyperpolarization- and cAMP gated (HCN) ion channels open on hyperpolarization. Structure-function studies show that the voltage-sensor of HCN channels are unique but the mechanisms that determine gating polarity remain poorly understood. All-atom molecular dynamics simulations (~20 μs) of HCN1 channel under hyperpolarization reveals an initial downward movement of the S4 voltage-sensor but following the transfer of last gating charge, the S4 breaks into two sub-helices with the lower sub-helix becoming parallel to the membrane.

View Article and Find Full Text PDF

Despite sharing a common architecture with archetypal voltage-gated ion channels (VGICs), hyperpolarization- and cAMP-activated ion (HCN) channels open upon hyperpolarization rather than depolarization. The basic motions of the voltage sensor and pore gates are conserved, implying that these domains are inversely coupled in HCN channels. Using structure-guided protein engineering, we systematically assembled an array of mosaic channels that display the full complement of voltage-activation phenotypes observed in the VGIC superfamily.

View Article and Find Full Text PDF

Aspirin induces apoptotic cell death in various cancer cell lines. Here we showed that silencing of VDAC1 protected HeLa cells from aspirin-induced cell death. Compared to the wild type cells, VDAC1 knocked down cells showed lesser change of mitochondrial membrane potential (Δψ), upon aspirin treatment.

View Article and Find Full Text PDF

Since its discovery, neuroglobin (Ngb), a neuron-specific oxygen binding hemoglobin, distinct from the classical myoglobin and blood hemoglobin, has attracted attention as an endogenous neuroprotectant. Recent reports suggest that Ngb protects neurons from brain stroke, ischemic stress-induced degeneration, and other brain disorders. Proteins with a specific role in neuroprotection are often associated with neurodegeneration, as well, depending on the cellular environment or specific cellular triggers that tilt the balance one way or the other.

View Article and Find Full Text PDF

Dietary trans fatty acids (TFAs) are known to increase the risk of cardiovascular diseases by altering plasma lipid profile and activating various inflammatory signaling pathways. Here we show that elaidic acid (EA), the most abundant TFA in diet, alters the electrophysiological properties of voltage-dependent anion channel (VDAC) of mitochondria. Purified bovine brain VDAC, when incorporated in the planar lipid bilayer (PLB) composed of 1,2-diphytanoyl-sn-glycero-3 phosphatidyl choline (DPhPC) and EA in a 9 to 1 ratio (wt/wt), exhibited complete closing events at different voltages.

View Article and Find Full Text PDF

Conversion of amyloid fibrils by many peptides/proteins involves cytotoxic helix-rich oligomers. However, their toxicity and biophysical studies remain largely unknown due to their highly dynamic nature. To address this, we chose two helical peptides (melittin, Mel and pancreatic polypeptide, PP) and studied their aggregation and toxicity.

View Article and Find Full Text PDF

Voltage dependent anion channel (VDAC) of mitochondria plays a crucial role in apoptosis. Human VDAC-1, reconstituted in planar lipid bilayer showed reduced conductance when treated with curcumin. Curcumin interacts with residues in the α helical N-terminus of VDAC and in the channel wall, as revealed by molecular docking, followed by mutational analysis.

View Article and Find Full Text PDF

Artificial anion selective ion channels with single-file multiple anion-recognition sites are rare. Here, we have designed, by hypothesis, a small molecule that self-organizes to form a barrel rosette ion channel in the lipid membrane environment. Being amphiphilic in nature, this molecule forms nanotubes through intermolecular hydrogen bond formation, while its hydrophobic counterpart is stabilized by hydrophobic interactions in the membrane.

View Article and Find Full Text PDF