We have earlier proposed a 2-channel imaging technique: Adapted Polarisation State Contrast Imaging (APSCI), which noticeably enhances the polarimetric contrast between an object and its background using fully polarised incident state adapted to the scene, such that the polarimetric responses of those regions are located as far as possible on the Poincaré sphere. We address here the full analytical and graphical analysis of the ensemble of solutions of specific incident states, by introducing 3-Distance Eigen Space and explain the underlying physical structure of APSCI and the effect of noise over the measurements.
View Article and Find Full Text PDFThe principle of the polarimetric imaging method called APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using specific polarization states of illumination and detection. We perform here a comparative study of the APSCI method with existing Classical Mueller Imaging(CMI) associated with polar decomposition in the presence of fully and partially polarized circular Gaussian speckle. The results show a noticeable increase of the Bhattacharyya distance used as our contrast parameter for the APSCI method, especially when the object and background exhibit several polarimetric properties simultaneously.
View Article and Find Full Text PDF