Scaffolds play a crucial role in bone tissue engineering to support the defect area through bone regeneration and defect reconstruction. Promising tissue regeneration without negative repercussions and avoidance of the lifelong presence inside the body make bioresorbable metals prosper in the field of regenerative medicine. Recently, Zn and its alloys have emerged as promising biodegradable materials for their moderate degradation rate and satisfactory biocompatibility.
View Article and Find Full Text PDFIn the field of bone tissue engineering, recently developed Zn alloy scaffolds are considered potential candidates for biodegradable implants for bone regeneration and defect reconstruction. However, the clinical success of these alloys is limited due to their insufficient surface bioactivities. Further, the higher concentration of Zn produced during degradation promotes antibacterial activity, but deteriorates osteogenic properties.
View Article and Find Full Text PDFZinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2CuMn/Mg ( = 0, 0.1, and 0.
View Article and Find Full Text PDFThree Zn-based alloys (Zn1Cu, Zn2Cu, and Zn3Cu) were developed by the addition of Cu (1, 2, and 3 wt %) into commercially pure Zn. This report systematically investigates the potential for these newly developed Zn-based alloys as biodegradable materials. Microstructural studies reveal the presence of spherical-shaped nanosized precipitates of ε-CuZn in the Zn1Cu alloy, whereas Zn2Cu and Zn3Cu alloys exhibit the presence of both micron- and nanosized precipitates of ε-CuZn.
View Article and Find Full Text PDF