Context: The reaction force constant ( ), introduced by Professor Alejandro Toro-Labbé, plays a pivotal role in characterizing the reaction pathway by assessing the curvature of the potential energy profile along the intrinsic reaction coordinate. This study establishes a novel link between and the reactivity descriptors of conceptual density functional theory (c-DFT). Specifically, we derive expressions that relate the reaction force constant to nuclear softness and variations in chemical potential.
View Article and Find Full Text PDFThe numerical ill-conditioning associated with approximating an electron density with a convex sum of Gaussian or Slater-type functions is overcome by using the (extended) Kullback-Leibler divergence to measure the deviation between the target and approximate density. The optimized densities are non-negative and normalized, and they are accurate enough to be used in applications related to molecular similarity, the topology of the electron density, and numerical molecular integration. This robust, efficient, and general approach can be used to fit any non-negative normalized functions (e.
View Article and Find Full Text PDFNonlocal exchange-correlation energy functionals are constructed using the accurate model exchange-correlation hole for the uniform electron gas developed by Gori-Giorgi and Perdew. The exchange-correlation hole is constrained to be symmetric and normalized, so the resulting functionals can be viewed as symmetrized versions of the weighted density approximation; we call them two-point weighted density approximations. Even without optimization of parameters or functional forms, the exchange-correlation energies for small molecules are competitive with those of the best generalized gradient approximation functionals.
View Article and Find Full Text PDFRelationships between third-order reactivity indicators in the closed system [N, v(r)], open system [mu, v(r)], and density [rho(r)] pictures are derived. Our method of derivation unifies and extends known results. Among the relationships is a link between the third-order response of the energy to changes in the density and the quadratic response of the density to changes in external potential.
View Article and Find Full Text PDF