Publications by authors named "Debaditya Choudhury"

Numerous optodes, with fluorophores as the chemical sensing element and optical fibres for light delivery and collection, have been fabricated for minimally invasive endoscopic measurements of key physiological parameters such as pH. These flexible miniaturised optodes have typically attempted to maximize signal-to-noise through the application of high concentrations of fluorophores. We show that high-density attachment of carboxyfluorescein onto silica microspheres, the sensing elements, results in fluorescence energy transfer, manifesting as reduced fluorescence intensity and lifetime in addition to spectral changes.

View Article and Find Full Text PDF

The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode "photonic lantern" transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement.

View Article and Find Full Text PDF

Hollow core negative curvature fibres (NCFs) are a relatively new class of microstructured optical fibre with potential applications in areas such as the delivery of high power laser light and gas sensing. For sensing, it is necessary for the measurand to interact with the guided mode. To facilitate this, a novel femtosecond laser-based machining protocol has been developed that allows the precision sculpting of access slots into the NCF core along the length of the fibre.

View Article and Find Full Text PDF

A robust method to selectively attach specific fluorophores onto the individual cores of a multicore fiber is reported in this Letter. The method is based on the use of ultrafast laser pulses to nanostructure the facet of the fiber core, followed by amine functionalization and sensor conjugation. This surface-machining protocol not only enables precise spatial selectivity, but it also facilitates high deposition densities of the sensor moieties.

View Article and Find Full Text PDF

Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive in vivo in situ measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre.

View Article and Find Full Text PDF

Ultrafast laser assisted etching (ULAE) in fused silica is an attractive technology for fabricating three-dimensional micro-components. ULAE is a two-step process whereby ultrafast laser inscription (ULI) is first used to modify the substrate material and chemical etching is then used to remove the laser modified material. In this paper, we present a detailed investigation into how the ULI parameters affect the etching rate of laser modified channels and planar surfaces written in fused silica.

View Article and Find Full Text PDF

The fabrication of fluorescence-based pH sensors, embedded into etched pits of an optical fibre via highly controllable and spatially selective photo-polymerisation is described and the sensors validated.

View Article and Find Full Text PDF

We present the results of our work on developing fully integrated devices (photonic dicers) for reformatting multimode light to a diffraction limited pseudo-slit. These devices can be used to couple a seeing limited telescope point spread function to a spectrograph operating at the diffraction limit, thus potentially enabling compact, high-resolution spectrographs that are free of modal noise.

View Article and Find Full Text PDF

We demonstrate the first experimental realization of a dispersionless state, in a photonic Lieb lattice formed by an array of optical waveguides. This engineered lattice supports three energy bands, including a perfectly flat middle band with an infinite effective mass. We analyze, both experimentally and theoretically, the evolution of well-prepared flat-band states, and show their remarkable robustness, even in the presence of disorder.

View Article and Find Full Text PDF

We report the ultrafast laser fabrication and mid-IR characterization (3.39 μm) of four-port evanescent field directional couplers. The couplers were fabricated in a commercial gallium lanthanum sulfide glass substrate using sub-picosecond laser pulses of 1030 nm light.

View Article and Find Full Text PDF

Laser-induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm.

View Article and Find Full Text PDF

Quantum dot thermal imaging has been used to analyse the chromatic dependence of laser-induced thermal effects inside optofluidic devices with monolithically integrated near-infrared waveguides. We demonstrate how microchannel optical local heating plays an important role, which cannot be disregarded within the context of on-chip optical cell manipulation. We also report on the thermal imaging of locally illuminated microchannels when filled with nano-heating particles such as carbon nanotubes.

View Article and Find Full Text PDF

The dissimilar cytoskeletal architecture in diverse cell types induces a difference in their deformability that presents a viable approach to separate cells in a non-invasive manner. We report on the design and fabrication of a robust and scalable device capable of separating a heterogeneous population of cells with variable degree of deformability into enriched populations with deformability above a certain threshold. The three dimensional device was fabricated in fused silica by femtosecond laser direct writing combined with selective chemical etching.

View Article and Find Full Text PDF