Publications by authors named "Debaditya Bera"

Smart or adaptive materials often utilize stimuli-responsive polymers, which undergo a phase transition in response to a given stimulus. So far, various stimuli have been used to enable the modulation of drug release profiles, cell-interactive behavior, and optical and mechanical properties. In this respect, molecular recognition is a powerful tool to fine-tune the stimuli-responsive behavior due to its high specificity.

View Article and Find Full Text PDF

In this work, a rational strategy of competitive host-guest complexation between dioxynaphthalene (Naph) and tetrathiafulvalene (TTF) subunits as guests and cyclophane cyclobis(paraquat-p-phenylene) (CBPQT ) module as host is exploited to modify the macromolecular architecture, so-called supramolecular metamorphosis, in aqueous media. The architectures of the polymers can be reversibly transformed from a linear diblock copolymer AB to a linear AC block copolymer or from a linear block copolymer to a comb copolymer by redox switching. Interestingly, as TTF- and Naph-based complexes feature different characteristic colors, it offers a great opportunity to directly observe nanoscaled macromolecular metamorphosis of materials with the naked eye.

View Article and Find Full Text PDF

Thermoresponsive polymeric materials are important building blocks for smart materials. In this work, the transformation of dsDNA into a thermoresponsive polymer is reported by intercalation of short, oligoethylene-glycol-modified proflavine intercalators. The thermoresponsiveness of the dsDNA-intercalator complex originates from the heating-induced dehydration of the ethylene glycol side chains, which leads to aggregation of the intercalated dsDNA.

View Article and Find Full Text PDF

Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.

View Article and Find Full Text PDF