Publications by authors named "Deanna L Benson"

Article Synopsis
  • Anxiety is a common non-motor symptom of Parkinson's disease that can begin before noticeable motor symptoms, with a higher prevalence in females despite the disease being more common in males.
  • A study used young adult mice with a specific mutation related to Parkinson's to investigate differences in stress-induced anxiety behaviors between male and female subjects, revealing no baseline differences in anxiety responses.
  • Following chronic stress, male mice showed different responses compared to their wildtype counterparts but female mice exhibited similar anxiety reactions to stress regardless of mutation, highlighting a significant sex-specific difference in how the mutation affects stress-related anxiety behaviors.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in also exhibit deficits in fronto-striatal-based cognitive tasks.

View Article and Find Full Text PDF

Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of brainstem dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear.

View Article and Find Full Text PDF

We have developed a photochemical protecting group that enables wavelength selective uncaging using green versus violet light. Change of the exocyclic oxygen of the laser dye coumarin-102 to sulfur, gave thio-coumarin-102, a new chromophore with an absorption ratio at 503/402 nm of 37. Photolysis of thio-coumarin-102 caged γ-aminobutyric acid was found to be highly wavelength selective on neurons, with normalized electrical responses >100-fold higher in the green versus violet channel.

View Article and Find Full Text PDF

Unlabelled: Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in also exhibit deficits in fronto-striatal-based cognitive tasks.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how prefrontal cortex (PFC) projections develop and affect action-outcome associations in the dorsal striatum of postnatal mice, revealing that PFC axons achieve an adult-like pattern and synaptic strength early in development.
  • - By using Hotspot analysis, researchers found that PFC axons form clusters within the first week after birth, stabilizing over time, while excitatory synapse density continues to increase until adulthood.
  • - Mutant mice lacking the protein Cadherin-8 showed improper PFC axon targeting and reduced synaptic activity, leading to difficulties in action-outcome learning, emphasizing the importance of Cdh8 for the correct formation of these neural pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Rational decision-making relies on connections between the prefrontal cortex and the dorsomedial striatum, and disruptions in this projection are linked to various mental health disorders.
  • A study using Hotspot Analysis found that the anatomical positioning of these projections develops early and remains largely stable into adulthood, with steady synapse formation throughout late postnatal development.
  • Mice lacking the adhesion protein Cdh8 showed altered axon terminal positioning and difficulties in learning action-outcome associations, suggesting that early developmental mechanisms play a critical role in the function of corticostriatal connections.
View Article and Find Full Text PDF

Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2 carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2 knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation.

View Article and Find Full Text PDF

Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD.

View Article and Find Full Text PDF

In humans, copy number variations in appear to have sweeping physiological and structural consequences in the brain, either producing or altering the severity of intellectual disability, autism, and schizophrenia. Independently, haploinsufficiency produces intellectual disability and, frequently, autism. Cyfip1 inhibits protein translation and promotes actin polymerization, and SynGAP1 is a synaptically localized Ras/Rap GAP.

View Article and Find Full Text PDF

Membrane trafficking processes regulate G protein-coupled receptor (GPCR) activity. Although class A GPCRs are capable of activating G proteins in a monomeric form, they can also potentially assemble into functional GPCR heteromers. Here, we showed that the class A serotonin 5-HT receptors (5-HTRs) affected the localization and trafficking of class C metabotropic glutamate receptor 2 (mGluR2) through a mechanism that required their assembly as heteromers in mammalian cells.

View Article and Find Full Text PDF

Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation -G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice.

View Article and Find Full Text PDF

Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood.

View Article and Find Full Text PDF

Quiescence is a fundamental property that maintains hematopoietic stem cell (HSC) potency throughout life. Quiescent HSCs are thought to rely on glycolysis for their energy, but the overall metabolic properties of HSCs remain elusive. Using combined approaches, including single-cell RNA sequencing (RNA-seq), we show that mitochondrial membrane potential (MMP) distinguishes quiescent from cycling-primed HSCs.

View Article and Find Full Text PDF

Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior.

View Article and Find Full Text PDF

The cardinal motor symptoms that define Parkinson's disease (PD) clinically have been recognized for over 200 years. That these symptoms arise following the loss of dopamine neurons in the substantia nigra has been known for the last 50. These long-established facts have fueled a broadly held expectation that degenerating dopaminergic neurons alone hold the key to understanding and curing PD.

View Article and Find Full Text PDF

mutation is the most common inherited, autosomal dominant cause of Parkinson's disease (PD) and has also been observed in sporadic cases. Most mutations result in increased LRRK2 kinase activity. LRRK2 is highly expressed in brain regions that receive dense, convergent innervation by dopaminergic and glutamatergic axons, and its levels rise developmentally coincident with glutamatergic synapse formation.

View Article and Find Full Text PDF

The G2019S mutation in leucine-rich repeat kinase 2 () is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a -G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning.

View Article and Find Full Text PDF

The use of ever-advancing imaging techniques has contributed broadly to our increased understanding of embryonic development. Pre-implantation development and organogenesis are two areas of research that have benefitted greatly from these advances, due to the high quality of data that can be obtained directly from imaging pre-implantation embryos or ex vivo organs. While pre-implantation embryos have yielded data with especially high spatial resolution, later stages have been less amenable to three-dimensional reconstruction.

View Article and Find Full Text PDF

Neurons can endocytose soluble semaphorins to either initiate or interrupt signaling at the cell membrane. Depending on the cell type and even on the specific subcellular domain, the endocytic process will differ in intensity, speed, and modality, and will subsequently facilitate diverse actions of semaphorin molecules. Therefore, in order to understand the physiology of guidance cues like semaphorins it is important to visualize endocytic events with good spatial and temporal resolution.

View Article and Find Full Text PDF

Unlabelled: Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations.

View Article and Find Full Text PDF

Unlabelled: Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude.

View Article and Find Full Text PDF