Background: Alcohol use in adolescence may increase susceptibility to substance use disorders (SUDs) in adulthood. This study determined if voluntary ethanol (EtOH) consumption during adolescence, combined with social isolation, alters the trajectory of EtOH and nicotine intake during adulthood, as well as activating brain neuroinflammation.
Methods: Adolescent male isolate- and group-housed rats were given 0.
Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent "reactive neurogenesis" coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown.
View Article and Find Full Text PDFWe developed an approach utilizing nanoscale vesicles extracted from brain regions combined with single molecule imaging to monitor how an animal's physiological condition regulates the dynamics of protein distributions in different brain regions. This method was used to determine the effect of nicotine on the distribution of receptor stoichiometry in different mouse brain regions. Nicotine-induced upregulation of α4β2 nicotinic acetylcholine receptors (nAChRs) is associated with changes in their expression, trafficking, and stoichiometry.
View Article and Find Full Text PDFExcessive alcohol intake, a defining characteristic of an alcohol use disorder (AUD), results in neurodegeneration in the hippocampus and entorhinal cortex that has been linked to a variety of cognitive deficits. Neuroinflammation is thought to be a factor in alcohol-induced neurodegeneration, and microglia activation is a key but not sole component of an inflammatory response. These experiments investigate the effects of ethanol exposure in a well-accepted model of an AUD on both microglial activation and blood brain barrier disruption (BBB) in order to understand their relationship to classical definitions of inflammation and alcohol-induced neurodegeneration.
View Article and Find Full Text PDFNovel pharmacological approaches that safely and effectively lessen the degree of neurological impairment following traumatic brain injury (TBI) are sorely needed. Non-invasive approaches that could be used over an extended periods of time might be particularly useful. Previous studies from our lab have hypothesized that TBI-induced decreases in hippocampal and cortical alpha7 neuronal nicotinic cholinergic receptor (nAChR) expression might contribute to cognitive impairment that follows brain injury.
View Article and Find Full Text PDF