While prostaglandin E (PGE) is produced in human tumor microenvironment (TME), its role therein remains poorly understood. Here, we examine this issue by comparative single-cell RNA sequencing of immune cells infiltrating human cancers and syngeneic tumors in female mice. PGE receptors EP4 and EP2 are expressed in lymphocytes and myeloid cells, and their expression is associated with the downregulation of oxidative phosphorylation (OXPHOS) and MYC targets, glycolysis and ribosomal proteins (RPs).
View Article and Find Full Text PDFLymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration.
View Article and Find Full Text PDFThe Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown.
View Article and Find Full Text PDFProstaglandin E (PGE) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE-mediated radial spread of PKA activation (RSPA) in neighboring cells.
View Article and Find Full Text PDFAllergic contact dermatitis (ACD) is a type IV hypersensitivity mainly mediated by Th1/Th17 immune response. Topical corticosteroid is currently the first-line treatment for allergic contact dermatitis (ACD) and systemic administration of immunosuppressive drugs are used in patients with severe disseminated cases. However, increased risk of adverse effects has limited their use.
View Article and Find Full Text PDFHere, we describe a protocol for single-cell isolation from the primary culture of normal human epidermal keratinocytes derived from neonatal foreskin. The cell culture conditions have been optimized for inducing expression of keratinocyte differentiation markers. Cells are cultured in the absence or presence of a bioactive lipid lysophosphatidic acid (LPA).
View Article and Find Full Text PDFActive inflammation generally promotes immune activation. However, in the tumor microenvironment (TME), active inflammation occurs in parallel with immunosuppression, and both contribute to tumor growth. Why inflammation does not lead to immune activation in TME remains unclear.
View Article and Find Full Text PDFCancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization.
View Article and Find Full Text PDFKeratinocyte differentiation is an intricate process that is regulated by multiple mediators. Using cultured human keratinocytes, we found that lysophosphatidic acid (LPA) induced the differentiation of a previously unsuspected keratinocyte subpopulation expressing the extracellular matrix protein, thrombospondin-1 (THBS1). This action of LPA was mediated by the RHO/ROCK-SRF signaling downstream of LPA and LPA receptors and required ERK activity.
View Article and Find Full Text PDFImportance: Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals.
View Article and Find Full Text PDFIn this issue of Structure, Nojima et al. (2021) report the structure of the PGE-EP4-G complex by cryo-electron microscopy. This work shows unique modes of ligand binding, transduction mechanism, and G protein coupling of EP4, and serves as a starting point for development of more selective drugs.
View Article and Find Full Text PDFThe discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections.
View Article and Find Full Text PDFAims: Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood.
View Article and Find Full Text PDFThe skin barrier protects the body from water loss, allergens, and pathogens. Profilaggrin is produced by differentiated keratinocytes and is processed into filaggrin monomers. These monomers cross-link keratin filaments and are also decomposed to natural moisturizing factors in the stratum corneum for skin hydration and barrier function.
View Article and Find Full Text PDFFormin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell.
View Article and Find Full Text PDFBackground: IL-23 is the key cytokine for generation of pathogenic IL-17-producing helper T (T17) cells, which contribute critically to autoimmune diseases. However, how IL-23 generates pathogenic T17 cells remains to be elucidated.
Objectives: We sought to examine the involvement, molecular mechanisms, and clinical implications of prostaglandin (PG) E-EP2/EP4 signaling in induction of IL-23-driven pathogenic T17 cells.
One of the main research areas in biology from the mid-1980s through the 1990s was the elucidation of signaling pathways governing cell responses. These studies brought, among other molecules, the small GTPase Rho to the epicenter. Rho signaling research has since expanded to all areas of biology and medicine.
View Article and Find Full Text PDFDIAPH1 encodes human DIA1, a formin protein that elongates unbranched actin. The c.3634+1G>T DIAPH1 mutation causes autosomal dominant nonsyndromic sensorineural hearing loss, DFNA1, characterized by progressive deafness starting in childhood.
View Article and Find Full Text PDFThe lipid mediator sphingosine 1-phosphate (S1P) regulates a wide range of cellular activities, including vascular maturation, angiogenesis, and immune-cell trafficking. Among the five known receptors for S1P (S1PR1-S1PR5), S1PR1 is a critical regulator of lymphocyte trafficking: its signaling is required for lymphocyte egress from lymphoid organs, while its down-modulation by agonist-induced internalization is a prerequisite for lymphocyte entry into lymphoid organs from the bloodstream. Despite the importance of S1PR1 down-regulation in determining lymphocyte behavior, the molecular mechanism of its internalization in lymphocytes has not been defined.
View Article and Find Full Text PDFRho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin.
View Article and Find Full Text PDFmDia is an actin nucleator and polymerization factor regulated by the small GTPase Rho and consists of three isoforms. Here, we found that mice lacking mDia1 and mDia3, two isoforms expressed in the brain, in combination (mDia-DKO mice) show impaired left-right limb coordination during locomotion and aberrant midline crossing of axons of corticospinal neurons and spinal cord interneurons. Given that mice lacking Ephrin-B3-EphA4 signaling show a similar impairment in locomotion, we examined whether mDia is involved in Ephrin-B3-EphA4 signaling for axon repulsion.
View Article and Find Full Text PDFThis article reports a case of macrocephalic sperm head syndrome, which is defined as the presence of a very high percentage of spermatozoa with enlarged heads and multiple flagellae, together with detailed morphological analysis. After a couple presented with infertility, sperm analysis showed severe teratozoospermia and almost all of the spermatozoa had macrocephaly with multiple tails. The morphological analysis revealed that most of the sperm heads contained several nuclei and had a similar number of tails as that of nuclei.
View Article and Find Full Text PDFIn brain development, distinct types of migration, radial migration and tangential migration, are shown by excitatory and inhibitory neurons, respectively. Whether these two types of migration operate by similar cellular mechanisms remains unclear. We examined neuronal migration in mice deficient in mDia1 (also known as Diap1) and mDia3 (also known as Diap2), which encode the Rho-regulated actin nucleators mammalian diaphanous homolog 1 (mDia1) and mDia3.
View Article and Find Full Text PDFDuring development of the central nervous system, the apical-basal polarity of neuroepithelial cells is critical for homeostasis of proliferation and differentiation of neural stem cells. While adherens junctions at the apical surface of neuroepithelial cells are important for maintaining the polarity, the molecular mechanism regulating integrity of these adherens junctions remains largely unknown. Given the importance of actin cytoskeleton in adherens junctions, we have analyzed the role of mDia, an actin nucleator and a Rho effector, in the integrity of the apical adherens junction.
View Article and Find Full Text PDFRho-associated coiled-coil-forming protein serine/threonine kinase (ROCK) consisting of two isoforms, ROCK-I and ROCK-II, functions downstream of the small GTPase Rho for assembly of actomyosin bundles. To examine the role of ROCK isoforms in vivo, we previously generated and examined mice deficient in each of the two isoforms individually. Here, we further examined the in vivo role of ROCK isoforms by generating mice deficient in both isoforms.
View Article and Find Full Text PDF