Publications by authors named "Dean Shi"

In order to get stable co-continuous morphology in immiscible polymer blends, besides reducing the interfacial tension, the compatibilizer should not only promote the formation of flat interface between different phases, but also not hinder the coalescence of the dispersed phase. Herein, the relationship between the morphology of the compatibilized polystyrene/nylon 6/styrene-maleic anhydride (PS/PA6/SMA) immiscible polymer blends and the structures of the in-situ formed SMA-g-PA6 graft copolymers as well as the processing conditions are studied. Two kinds of SMA are used: SMA28 (28 wt.

View Article and Find Full Text PDF

Cellulose nanocrystal (CNC)-based chiral nematic structure is widely used in stimulus response and sensing. A popular area of research is enhancing the mechanical characteristics and environmental adaptability of chiral nematic materials. In this paper, a flexible photonic film with self-healing ability (FPFS) was prepared by combining waterborne polyurethane containing dynamic covalent disulfide bonds (SSWPU) with CNC.

View Article and Find Full Text PDF

The leakages of a large number of organic solvents and oil spills not only cause extensive economic losses, but also destroy the ecological environment. However, there were few studies on the surface engineering of adsorption materials for efficient oil-water separation in complex environments. In this research, through surface engineering, the polymer-based foam exhibited high efficiency oil-water separation performance in different pH environments.

View Article and Find Full Text PDF

Sub-nanometric materials (SNMs) represent a series of unprecedented size-/morphology-related properties applicable in theoretical research and diverse cutting-edge applications. However, in-depth investigation and wide utilization of organic SNMs are frequently hindered, owing to the complex synthesis procedures, insufficient colloidal stability, poor processability, and high cost. In this work, a low-cost, energy-efficient, convenient, effective, and scalable method is demonstrated for directly exfoliating chitin SNMs from their natural sources through a one-pot "tandem molecular intercalation" process.

View Article and Find Full Text PDF

A flexible strain sensor is of significant importance in wearable electronics since it can help monitor the physical signals from the human body. Among various strain sensors, the polyurethane (PU)-based ones have received widespread attention owing to their excellent toughness, large working range, and nice gas permeability. However, the hydrophobicity of these sensors is not good enough, which may affect their use life and sensitivity.

View Article and Find Full Text PDF

Traditionally, energy-intensive and time-consuming postmechanical disintegration processes are inevitable in extracting biopolymer nanofibrils from natural materials and thereby hinder their practical applications. Herein, a new, convenient, scalable, and energy-efficient method for exfoliating nanofibrils (ChNFs) from various chitin sources via pseudosolvent-assisted intercalation process is proposed. These self-exfoliated ChNFs possess controllable thickness from 2.

View Article and Find Full Text PDF

The fluorescent dye molecules have gained wide attention for their applications in areas such as imaging and sensor. However, the properties of the fluorescent dyes are limited due to the built-in problems such as the aggregation-caused quenching (ACQ). Herein, a fluorescent dye@MOF was developed by encapsulating fluorescent dye molecules into the channels of metal-organic frameworks (MOFs) to disperse them.

View Article and Find Full Text PDF

Sulforhodamine B (SRB) is widely utilized for cell staining and laser field. But its application is limited by aggregation-caused quenching (ACQ). In this work, we evaluated the use of UiO-66 and UiO-67 of Zr-based metal organic frameworks (Zr-MOFs) as the host to adsorb SRB molecules due to the high stabily and good loading capacity of Zr-MOFs.

View Article and Find Full Text PDF

Antibacterial polymer membranes have been widely used in many fields of our daily life. In this study, porous PA6 membrane with ZnO nanoparticles attaching on to the surface of inner pore walls is prepared. Firstly, SMA (styrene maleic anhydride copolymer) is used to graft onto the surface of ZnO nanoparticle in DMF (dimethylformamide).

View Article and Find Full Text PDF

CoO nanostructures have been extensively studied as anode materials for rechargeable lithium-ion batteries (LIBs) because of their stability and high energy density. However, several drawbacks including low electrical transport and severe volume changes over a long period of operation have limited their utilities in LIBs. Rational composite design is becoming an attractive strategy to improve the performance and stability of potential lithium-ion-battery anode materials.

View Article and Find Full Text PDF

Isostructural zirconium-based metal⁻organic frameworks (Zr-MOFs) have attracted the attention of researchers because of their remarkable stability at high temperatures and high pressures and their chemical stabilities against acids and bases. Due to this stability, Zr-MOFs can be utilized in adsorption research, and the adsorption performance of a Zr-MOF depends on the pore size and the surroundings of the MOF. In this study, as the dimensions changed and the adsorption was carried out, the Zr-MOF material remained stable, and the adsorption of the best state was achieved at 235 mg/g.

View Article and Find Full Text PDF

Well-defined polymeric particles with not only a controllable shape and internal nanostructures but also stimuli-responsive functions have attracted intensive attention because of their great potential in various fields. Herein, we created unique sieve-like particles with lattice arrayed switchable channels via the confined self-assembly of poly(4-vinylpyridine)-b-polystyrene-b-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP) triblock copolymers within the emulsion droplets and the subsequent swelling treatment in ethanol. It is worth noting that the hexagonally packed P4VP channels in the sieve-like particles are switched on and off by changing the solvent type, i.

View Article and Find Full Text PDF

A series of novel polyurethanes containing cross-linked siloxane in the side chain (SPU) were successfully synthesized through a sol-gel process. The SPU was composed of 0%-20% N-(n-butyl)-3-aminopropyltriethoxysilane (HDI-T) modified hexamethylene diisocynate homopolymer. The effects of HDI-T content on both the structure and properties of SPU were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties tests, gel content test, water contact angle measurement and water absorption test.

View Article and Find Full Text PDF

Zirconium based metal organic frameworks (Zr-MOFs) have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7) could be up to 358 mg·g at 318 K, estimated by the Langmuir isotherm model.

View Article and Find Full Text PDF

Programmable photoactuation enabled by graphene: Graphene sheets aligned in liquid crystalline elastomers are capable of absorbing near-infrared light. They thereafter act as nanoheaters and provide thermally conductive pathways to trigger the nematic-to-isotropic transition of elastomers, leading to macroscopic mechanical deformation of nanocomposites. Large strain, high actuation force, high initial sensitivity, fast reversible response, and long cyclability are concurrently achieved in nanocomposites.

View Article and Find Full Text PDF

A facile approach to functionalize chitosan (CS) non-woven surface with the bactericidal and antifouling switchable moieties is presented. Azlactone-cationic carboxybetaine ester copolymer was firstly prepared, then chemically attached onto CS non-woven surface through the fast and efficient 'click'-type interfacial reaction between CS primary amines and azlactone moieties. The CS non-woven surface functionalized with cationic carboxybetaine esters is able to kill bacteria effectively.

View Article and Find Full Text PDF

In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.

View Article and Find Full Text PDF