Chemotherapy for patients chronically infected with hepatitis C virus (HCV) is ineffective in over 50% of cases, generating a high demand for new drug targets. The p7 protein of HCV displays membrane channel activity in vitro and is essential for replication in vivo though its precise role in the virus life cycle is unknown. p7 channel activity can be specifically inhibited by several classes of compounds, making this protein an attractive candidate for drug development, though techniques used to date in characterising this protein are unsuited to compound library screening.
View Article and Find Full Text PDFWe previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV).
View Article and Find Full Text PDFHepatitis C virus (HCV) cannot be grown in vitro, making biochemical identification of new drug targets especially important. HCV p7 is a small hydrophobic protein of unknown function, yet necessary for particle infectivity in related viruses [Harada, T. et al.
View Article and Find Full Text PDF