Purpose: Our objectives were (1) to compare the disposition and in vivo release of paclitaxel between a tocopherol-based Cremophor-free formulation (Tocosol Paclitaxel) and Cremophor EL-formulated paclitaxel (Taxol) in human subjects, and (2) to develop a mechanistic model for unbound and total paclitaxel pharmacokinetics.
Methods: A total of 35 patients (average +/- SD age: 59 +/-13 years) with advanced non-hematological malignancies were studied in a randomized two-way crossover trial. Patients received 175 mg/m(2) paclitaxel as 15 min (Tocosol Paclitaxel) or 3 h (Taxol) intravenous infusion in each study period.
Purpose: Our objective was to build a mechanism-based pharmacodynamic model for the time course of neutropenia in cancer patients following paclitaxel treatment with a tocopherol-based Cremophor-free formulation (Tocosol Paclitaxel) and Cremophor EL-formulated paclitaxel (Taxol).
Methods: A randomized two-way crossover trial was performed with 35 adult patients who received 175 mg/m(2) paclitaxel as either 15 min (Tocosol Paclitaxel) or 3 h (Taxol) intravenous infusions. Paclitaxel concentrations were measured by LC-MS/MS.
Tocols represent a family of tocopherols, tocotrienols, and their derivatives, and are fundamentally derived from the simplest tocopherol, 6-hydroxy-2-methyl-2-phytylchroman, which is referred to as "tocol". The most common tocol is D-alpha-tocopherol, also known as vitamin E. Tocols can be excellent solvents for water insoluble drugs and are compatible with other cosolvents, oils and surfactants.
View Article and Find Full Text PDF