Publications by authors named "Dean M Talia"

Microglial cells are important contributors to the neuroinflammation and blood vessel damage that occurs in ischemic retinopathies. We hypothesized that key effectors of the renin-angiotensin aldosterone system, angiotensin II (Ang II) and aldosterone, increase the density of microglia in the retina and stimulate their production of reactive oxygen species (ROS) as well as pro-angiogenic and pro-inflammatory factors. Two animal models were studied that featured up-regulation of Ang II or aldosterone and included transgenic Ren-2 rats which overexpress renin and Ang II in tissues including the retina, and Sprague Dawley rats with ischemic retinopathy and infused with aldosterone.

View Article and Find Full Text PDF

Although increasing evidence indicates that endothelin-2 (Edn2) has distinct roles in tissue pathology, including inflammation, glial cell dysfunction, and angiogenesis, its role in the retina and the factors that regulate its actions are not fully understood. We hypothesized that Edn2 damages the blood-retinal barrier (BRB) and that this is mediated by interactions with the renin-angiotensin-aldosterone system and reactive oxygen species derived from NADPH oxidase (Nox). C57BL/6J mice received an intravitreal injection of Edn2 or control vehicle to examine the blood pressure-independent effects of Edn2.

View Article and Find Full Text PDF

Neovascular retinopathies are major causes of vision loss; yet treatments to prevent the condition are inadequate. The role of regulatory T cells in neovascular retinopathy is unknown. Here we show that in retinopathy regulatory T cells are transiently increased in lymphoid organs and the retina, but decline when neovascularization is established.

View Article and Find Full Text PDF

Objective: Although inhibitors of vascular endothelial growth factor (VEGF) provide benefit for the management of neovascular retinopathies, their use is limited to end-stage disease and some eyes are resistant. We hypothesized that retinoic acid-related orphan nuclear receptor γ (RORγ) and its downstream effector, interleukin (IL)-17A, upregulate VEGF and hence are important treatment targets for neovascular retinopathies.

Approach And Results: Utilizing a model of oxygen-induced retinopathy, confocal microscopy and flow cytometry, we identified that retinal immunocompetent cells, microglia, express IL-17A.

View Article and Find Full Text PDF

Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.

View Article and Find Full Text PDF