Publications by authors named "Dean Lavelle"

Cuticular waxes of plants impart tolerance to many forms of environmental stress and help shed dangerous human pathogens on edible plant parts. Although the chemical composition of waxes on a wide variety of important crops has been described, a detailed wax compositional analysis has yet to be reported for lettuce ( L.), one of the most widely consumed vegetables.

View Article and Find Full Text PDF

As phenomics data volume and dimensionality increase due to advancements in sensor technology, there is an urgent need to develop and implement scalable data processing pipelines. Current phenomics data processing pipelines lack modularity, extensibility, and processing distribution across sensor modalities and phenotyping platforms. To address these challenges, we developed PhytoOracle (PO), a suite of modular, scalable pipelines for processing large volumes of field phenomics RGB, thermal, PSII chlorophyll fluorescence 2D images, and 3D point clouds.

View Article and Find Full Text PDF

The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana.

View Article and Find Full Text PDF

Leaf shape represents a vital agronomic trait for leafy vegetables such as lettuce. Some lettuce cultivars produce lobed leaves, varying from pinnately to palmately lobed, but the genetic mechanisms remain unclear. In this study, we cloned one major quantitative trait locus (QTL) controlling palmately lobed leaves.

View Article and Find Full Text PDF

A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production.

View Article and Find Full Text PDF

Flower opening and closure are traits of reproductive importance in all angiosperms because they determine the success of self- and cross-pollination. The temporal nature of this phenotype rendered it a difficult target for genetic studies. Cultivated and wild lettuce, Lactuca spp.

View Article and Find Full Text PDF

Leafy head is a unique type of plant architecture found in some vegetable crops, with leaves bending inward to form a compact head. The genetic and molecular mechanisms underlying leafy head in vegetables remain poorly understood. We genetically fine-mapped and cloned a major quantitative trait locus controlling heading in lettuce.

View Article and Find Full Text PDF

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity.

View Article and Find Full Text PDF

Following publication of the original article [1], the author reported a processing error in Figure 5. This has been corrected in the original article.

View Article and Find Full Text PDF

Anthocyanins protect plants from biotic and abiotic stressors and provide great health benefits to consumers. In this study, we cloned four genes (Red Lettuce Leaves 1 to 4: RLL1 to RLL4) that contribute to colour variations in lettuce. The RLL1 gene encodes a bHLH transcription factor, and a 5-bp deletion in some cultivars abolishes its function to activate the anthocyanin biosynthesis pathway.

View Article and Find Full Text PDF

Background: Verticillium wilt caused by the fungus Verticillium dahliae race 1 is among the top disease concerns for lettuce in the Salinas and Pajaro Valleys of coastal central California. Resistance of lettuce against V. dahliae race 1 was previously mapped to the single dominant Verticillium resistance 1 (Vr1) locus.

View Article and Find Full Text PDF

Different horticultural types of lettuce exhibit tremendous morphological variation. However, the molecular basis for domestication and divergence among the different horticultural types of lettuce remains unknown. Here, we report the RNA sequencing of 240 lettuce accessions sampled from the major horticultural types and wild relatives, generating 1.

View Article and Find Full Text PDF

Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules.

View Article and Find Full Text PDF

Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes.

View Article and Find Full Text PDF

Comparative genomic studies among highly divergent species have been problematic because reduced gene similarities make orthologous gene pairs difficult to identify and because colinearity is expected to be low with greater time since divergence from the last common ancestor. Nevertheless, synteny between divergent taxa in several lineages has been detected over short chromosomal segments. We have examined the level of synteny between the model species Arabidopsis thaliana and species in the Compositae, one of the largest and most diverse plant families.

View Article and Find Full Text PDF

The major cluster of resistance genes in lettuce cv. Diana contains approximately 32 nucleotide binding site-leucine-rich repeat encoding genes. Previous molecular dissection of this complex region had identified a large gene, RGC2B, as a candidate for encoding the downy mildew resistance gene, Dm3.

View Article and Find Full Text PDF