Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks.
View Article and Find Full Text PDFOxygen (O2) concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g.
View Article and Find Full Text PDFLakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity.
View Article and Find Full Text PDF