The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young's modulus in excess of 26.
View Article and Find Full Text PDFIn this study, we investigate the toxicity of hematite (α-Fe2O3) nanoparticles on the Madin-Darby Canine Kidney (MDCK) cell line. The oxide particles have been synthesized through two different methods and annealing conditions. These two methods, spray precipitation and precipitation, resulted in particles with rod-like and spherical morphology and feature different particle sizes, surface features, and magnetic properties.
View Article and Find Full Text PDF