Ionic-transport processes govern performance in many classic and emerging devices, ranging from battery storage to modern mixed-conduction organic electrochemical transistors (OECT). Here, we study local ion-transport dynamics in polymer films using time-resolved electrostatic force microscopy (trEFM). We establish a correspondence between local and macroscopic measurements using local trEFM and macroscopic electrical impedance spectroscopy (EIS).
View Article and Find Full Text PDFWe use frequency-modulated electrostatic force microscopy to track changes in cantilever quality factor (Q) as a function of photochemical damage in a model organic photovoltaic system poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and 3'H-cyclopropa[8,25][5,6]fullerene-C71-D5h(6)-3'-butanoic acid, 3'-phenyl-, methyl ester (PC71BM). We correlate local Q factor imaging with macroscopic device performance and show that, for this system, changes in cantilever Q correlate well with changes in external quantum efficiency and can thus be used to monitor local photochemical damage over the entire functional lifetime of a PTB7:PC71BM solar cell. We explore how Q imaging is affected by the choice of cantilever resonance frequency.
View Article and Find Full Text PDF