Publications by authors named "Dea D"

A structured questionnaire, own-flock ranking experiment, and group discussions were undertaken to assess goat breeding practices and to identify traits of interest for genetic improvement of indigenous goats. Four pastoral villages in Ethiopia, namely, Jarso, Mesoya, Eleweya, and Dharito were selected based on their goat production potential, accessibility, and suitability to implement community-based breeding programs. A survey and flock ranking experiment involving 70 households and 199 goats were used.

View Article and Find Full Text PDF

One important aspect in Alzheimer's disease pathology is the presence of chronic inflammation. Considering its role as a key receptor in the microglial innate immune system, TLR4 was shown to regulate the binding and phagocytosis of amyloid plaques by microglia in several mouse models of amyloidosis, as well as the production of pro-inflammatory cytokines. To our knowledge, TLR4 and its association with cytokines have not been thoroughly examined in the brains of subjects affected with Alzheimer's disease.

View Article and Find Full Text PDF

Background: Hypercholesterolemia is a major risk factor for the late-onset form of Alzheimer disease (AD). Loss-of-function (LOF) mutations of PCSK9 and PCSK9 inhibitors lower low-density lipoprotein cholesterol (LDL-C) and have been associated with a reduced risk of cardiovascular disease. The aim of this study was to examine the effect of PCSK9 LOF variants on risk and age of onset of AD.

View Article and Find Full Text PDF

Genome-wide association studies have identified several cholesterol metabolism-related genes as top risk factors for late-onset Alzheimer's disease (LOAD). We hypothesized that specific genetic variants could act as disease-modifying factors by altering the expression of those genes. Targeted association studies were conducted with available genomic, transcriptomic, proteomic, and histopathological data from 3 independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Quebec Founder Population (QFP), and the United Kingdom Brain Expression Consortium (UKBEC).

View Article and Find Full Text PDF

The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.

View Article and Find Full Text PDF

Introduction: Because currently known Alzheimer's disease (AD) single-nucleotide polymorphisms only account for a small fraction of the genetic variance in this disease, there is a need to identify new variants associated with AD.

Methods: Our team performed a genome-wide association study in the Quebec Founder Population isolate to identify novel protective or risk genetic factors for late-onset sporadic AD and examined the impact of these variants on gene expression and AD pathology.

Results: The rs10984186 variant is associated with an increased risk of developing AD and with a higher CDK5RAP2 mRNA prevalence in the hippocampus.

View Article and Find Full Text PDF

The APOE ε4 allele was originally reported to contribute to risk of Alzheimer's disease (AD) in women, yet male and female AD patient-derived data are routinely pooled. Histopathological hallmarks of AD include neurofibrillary tangles centered on hyperphosphorylated Tau and plaques composed of the β-amyloid (Aβ) peptide that is derived by sequential secretase-mediated cleavage of the Amyloid Protein Precursor (APP). We chose to examine profiles of Aβ(1-40), Aβ(1-42), and N-truncated (i.

View Article and Find Full Text PDF

Imaging biomarkers are frequently proposed as endpoints for clinical trials targeting brain amyloidosis in Alzheimer's disease (AD); however, the specific impact of amyloid-β (Aβ) aggregation on biomarker abnormalities remains elusive in AD. Using the McGill-R-Thy1-APP transgenic rat as a model of selective Aβ pathology, we characterized the longitudinal progression of abnormalities in biomarkers commonly used in AD research. Middle-aged (9-11 months) transgenic animals (both male and female) displayed mild spatial memory impairments and disrupted cingulate network connectivity measured by resting-state fMRI, even in the absence of hypometabolism (measured with PET [F]FDG) or detectable fibrillary amyloidosis (measured with PET [F]NAV4694).

View Article and Find Full Text PDF

Background: Genetic heterogeneity in amnestic mild cognitively impaired (aMCI) subjects could lead to variations in progression rates and response to cholinomimetic agents. Together with the apolipoprotein E4 (APOE-ɛ4) gene, butyrylcholinesterase (BCHE) has become recently one of the few Alzheimer's disease (AD) susceptibility genes with distinct pharmacogenomic properties.

Objective: To validate candidate genes (APOE/BCHE) which display associations with age of onset of AD and donepezil efficacy in aMCI subjects.

View Article and Find Full Text PDF

3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is a cholesterol-regulating gene with statin relevance. rs3846662 being involved in regulation of HMGCR alternative splicing, we explored its impact on HMGCR messenger RNA (mRNA) and protein levels in the brain and the associations between those levels and levels of Alzheimer's disease pathological markers. We used brain samples derived from a cohort of 33 non-demented controls and 90 Alzheimer's disease autopsied-confirmed cases.

View Article and Find Full Text PDF

Several retrospective epidemiological studies report that utilization of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors called statins at mid-life can reduce the risk of developing sporadic Alzheimer's disease (AD) by as much as 70%. Conversely, the administration of these inhibitors in clinically diagnosed subjects with AD confers little or no benefits over time. Here, we investigated the association between AD and HMGCR rs3846662, a polymorphism known to be involved in the regulation of HMGCR exon 13 skipping, in a founder population and in two distinct mixed North American populations of converting mild cognitively impaired (MCI) subjects (Alzheimer's disease Cooperative study (ADCS) and Alzheimer's disease Neuroimaging Initiative (ADNI) cohorts).

View Article and Find Full Text PDF

The discovery that the apolipoprotein E (apoE) ε4 allele is genetically linked to both sporadic and familial late-onset Alzheimer's disease (AD) raises the possibility that a dysfunction of the lipid transport system could seriously affect lipid homeostasis in the brain of AD subjects. The presence of the ε4 allele has been associated with lower levels of apoE in both serum and brain tissues of normal and AD subjects. In an attempt to reverse the apoE deficit in AD, we identified and characterized several apoE inducer agents using a low-throughput in vitro screening assay.

View Article and Find Full Text PDF

Apolipoprotein E (apoE) is recognized as a key actor in brain remodeling. It has been shown to increase after peripheral and central injury, to modulate reparative capacity in neurodegenerative conditions like Alzheimer's disease (AD) and to be associated with a number of other neurodegenerative diseases. This particular function of apoE has been postulated to underlie the robust association with risk and age at onset of AD.

View Article and Find Full Text PDF

Validating the expression stability of reference genes is crucial for reliable normalization of real-time quantitative PCR (qPCR) data, but relatively few studies have investigated this issue in brain human tissues. The present study thus aimed at identifying in human post-mortem brain tissues a set of suitable endogenous reference genes (ERG) for the expression analysis of potential candidate genes associated with Alzheimer's disease (AD). The mRNA levels of ten common ERGs (ACTB, GAPDH, GPS1, GUSB, M-RIP, PGK1, POL2RF, PPIA, UBE2D2, and YES1) were determined in the frontal cortex of autopsy-confirmed AD and non-demented control cases (n=20) using SYBR Green technology.

View Article and Find Full Text PDF

Evidence suggests that the genes involved in brain lipid homeostasis are of particular relevance for Alzheimer's disease (AD) etiology. Among these genes, that encoding paraoxonase 1 (PON1) has gained newfound interest from a public health perspective, as recent studies have suggested that PON1 L55M and Q192R genetic variants might affect individual susceptibility to environmental events, such as exposure to cholinesterase inhibitors. Cholinesterase inhibitor therapy being the treatment of choice for patients with mild to moderate AD, we sought to answer two main questions: (i) are these genetic variants associated with increased AD risk, earlier age of onset/death, or shorter AD duration; and (ii) do they affect the neuropathological hallmarks of AD? This genetic study used a large cohort of clinical and autopsy-confirmed AD cases and age-matched, cognitively intact controls from the Douglas Hospital Brain Bank, Quebec, Canada (n = 1066).

View Article and Find Full Text PDF

Emerging evidences indicate a role for lipoprotein lipase (LPL) in degenerative states. Genetic variations in the LPL gene were previously associated to lipid imbalance and coronary artery disease (CAD) risk and severity, a condition that shares pathological features with common Alzheimer's disease (AD). To evaluate whether these genetic variations associate with the risk and pathophysiology of common AD, autopsy-confirmed patients (242 controls, 153 AD) were genotyped for a PvuII single nucleotide polymorphism (SNP; rs285; referred to as the P+ allele) of LPL.

View Article and Find Full Text PDF

The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a multifunctional membrane glycoprotein, which binds different classes of ligands including IGF-II and M6P-bearing lysosomal enzymes. Besides participating in the process of endocytosis this receptor functions in the trafficking of lysosomal enzymes from the trans-Glogi network (TGN) or the cell surface to lysosomes. In Alzheimer's disease (AD) brain, marked overexpression of certain lysosomal enzymes in vulnerable neuronal populations and their association to beta-amyloid (Abeta) containing neuritic plaques has been correlated to altered metabolic functions.

View Article and Find Full Text PDF

ApoER2 is one of the major receptors for ApoE in the brain, and has been shown to be involved not only in lipoprotein endocytosis, as other members of the LDL receptor family of receptors, but also in various cellular functions such as signalling and cellular guidance. By using a model of synaptic plasticity in mice lacking none, one or two alleles of the apoER2 gene, we investigated the implication of such a receptor deficiency on the remodelling process. Our results indicate that animals lacking apoER2 express higher levels of brain APP, as well as both key amyloid peptides, while apoE levels are slightly lower.

View Article and Find Full Text PDF

Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects.

View Article and Find Full Text PDF

Epidemiological studies have shown that use of non-steroidal anti-inflammatory drugs (NSAIDs) by the elderly is associated with a decreased relative risk and a delayed onset of Alzheimer's disease (AD). In contrast, the apolipoprotein E (apoE) gene has proven to be a risk factor for AD with apoE epsilon 4 AD patients having been found to show lower levels of brain apoE. In the present study, treatment of primary rat mixed glial cell cultures with the common NSAIDs, indomethacin and aspirin, induced significant increases in extracellular apoE protein levels.

View Article and Find Full Text PDF

Several recent epidemiological studies have proposed that cholesterol-lowering drug Statin may provide protection against Alzheimer's disease (AD). Probucol is a non-Statin cholesterol-lowering drug and a potent inducer of apolipoprotein E (apoE) production in peripheral circulation. A recent clinical study using Probucol in elderly AD subjects revealed a concomitant stabilisation of cognitive symptoms and significant increases in apoE levels in the cerebral spinal fluid in these patients.

View Article and Find Full Text PDF

The H2 allele of apolipoprotein (apo) C-I is associated with Alzheimer's disease (AD). However, this association is potentially confounded by the linkage disequilibrium of H2 with the epsilon2 and epsilon4 alleles of apoE and of H1 with the epsilon3 allele. To establish plausibility for a direct role for apoC-I in AD, we compared apoC-I and apoE protein and mRNA levels in postmortem specimens of frontal cortex and hippocampus from AD patients with levels in nondemented controls.

View Article and Find Full Text PDF

Both apolipoprotein E (apoE) and amyloid peptides are associated with Alzheimer's disease (AD). Using primary hippocampal neurons, we demonstrate that apoE is capable of reducing potentially toxic extracellular amyloid peptides, likely through a receptor mediated mechanism. We hypothesize that isoform-specific differences in apoE-mediated amyloid clearance and intracellular accumulation may be responsible, at least in part, for the increased number of amyloid plaques observed in apoE epsilon4 allele AD individuals.

View Article and Find Full Text PDF

The frequency of the epsilon4 allele of apolipoprotein E (apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to beta-amyloid (A beta) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and A beta in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of A beta peptides to rat primary hippocampal neurons.

View Article and Find Full Text PDF

Apolipoprotein (apo) E is likely involved in redistributing cholesterol and phospholipids during compensatory synaptogenesis in the injured CNS. Three common isoforms of apoE exist in human (E2, E3, and E4). The apoE4 allele frequency is markedly increased in both late-onset sporadic and familial Alzheimer's disease (AD).

View Article and Find Full Text PDF