Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.
View Article and Find Full Text PDFUtilizing inexhaustible solar energy for water purification represents a green and sustainable solution to water scarcity. However, the developments of efficient, inexpensive, convenient and reliable photothermal materials remain a major challenge. Herein, a facile and versatile preparation strategy of sodium alginate (SA)-CuS composite coating with superior adhesion and stability has been proposed toward high-efficiency solar-driven interfacial evaporation.
View Article and Find Full Text PDFThe use of hydrogel-based interfacial solar evaporators for desalination is a green, sustainable, and extremely concerned freshwater acquisition strategy. However, developing evaporators that are easy to manufacture, cheap, and have excellent porous structures still remains a considerable challenge. This work proposes a novel strategy for preparing a self-assembling sponge-like poly(vinyl alcohol)/graphite composite hydrogel based on the Hofmeister effect for the first time.
View Article and Find Full Text PDFSeparator is an essential component of lithium-ion batteries (LIBs), which is placed between the electrodes to impede their electrical contact and provide the transport channels for lithium ions. Traditionally, the separator contributes the overall mass of LIBs, thereby reducing the gravimetric capacity of the devices. Herein, a dual-layer redox-active cellulose separator is designed and fabricated to enhance the electrochemical performances of LIBs by introducing NiS.
View Article and Find Full Text PDFCellulose composite nanopaper is extensively employed in flexible energy storage systems owing to their light weight, good flexibility and high specific surface area. Nevertheless, achieving flexible and ultrathin nanopaper supercapacitors with excellent electrochemical performance remains a challenge. Herein, surface cationization of bacterial cellulose (BC) nanofibers was conducted using 2,3-epoxypropyltrimethylammonium chloride (EPTMAC).
View Article and Find Full Text PDFPolypyrrole (PPy)/cellulose nanofiber (CNF) composites have been widely used in flexible energy storage devices because of their lightweight, inherent mechanical flexibility and large specific surface area. However, it is still a challenge to obtain PPy/CNF composite electrodes with high cycling stability. Herein, an electrostatic self-assembly strategy was adopted to deposit anion-doped PPy onto cationic poly(methacryloxyethyltrimethyl ammonium chloride)-grafted bacterial cellulose (BCD) nanofibers.
View Article and Find Full Text PDFThermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously.
View Article and Find Full Text PDFHigh-performance hydrogels with favorable mechanical strength, high modulus, sufficient ionic conductivity and freezing resistance have far-ranging applications in flexible electronic equipment. Nevertheless, it is challenging to combine admirable mechanical properties and high ionic conductivity into one hydrogel. Herein, a facile strategy was developed for the preparation of the hydrogel with excellent strength (1.
View Article and Find Full Text PDFPolypyrrole (PPy)/bacterial cellulose (BC) composite membranes are a promising kind of lightweight and flexible electrodes for supercapacitors. Herein, we explored a facile and efficient electrostatic self-assembly approach to uniformly depositing anion-doped PPy onto positively charged SnCl-modifed BC (SBC). The obtained PPy@SBC electrode exhibited a high areal capacitance of 5718 mF cm at a current density of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Commercial or clinical tissue adhesives are currently limited due to their weak bonding strength on wet biological tissue surface, low biological compatibility, and slow adhesion formation. Although catechol-modified hyaluronic acid (HA) adhesives are developed, they suffer from limitations: insufficient adhesiveness and overfast degradation, attributed to low substitution of catechol groups. In this study, we demonstrate a simple and efficient strategy to prepare mussel-inspired HA hydrogel adhesives with improved degree of substitution of catechol groups.
View Article and Find Full Text PDFInt J Biol Macromol
October 2018
Silk fibroin (SF) hydrogel is a promising candidate in biomaterial field; however its application is quite limited by long-gelation time. In the present study, we developed a novel strategy named soft freezing to accelerate the process and control the sol-gel transition of SF protein. SF protein was induced to self-assembly by soft freezing process for achieving the reconstructed SF solution with metastable structure.
View Article and Find Full Text PDFPhotocrosslinkable hydrogels composed of natural materials exhibit great application potential in tissue engineering scaffolds. However, weak formation and poor mechanical property can usually be a limitation. Herein, the photo-clickable thiol-ene hydrogels based chitosan were synthesized using photopolymerization of maleic chitosan (MCS) and thiol-terminated poly (vinyl alcohol) (TPVA) in the presence of a biocompatible photoinitiator.
View Article and Find Full Text PDFEven with outstanding radical capturing ability, the utilization of lignin as a natural antioxidant in polypropylene (PP) still has been pended. Usually, the compatibility of its blends is improved based on the reaction of hydroxyl content, thus leading to the decreasing content of phenolic hydroxyl (Ph-OH) group and inferior thermal-oxidative stability of lignin blends. Here, the selective aminolysis of acetylated Kraft lignin (pyr-KL) was investigated, which structures were characterized using FTIR, P-NMR and GPC.
View Article and Find Full Text PDFWhich factors are crucial to improving lignin antioxidant ability in polymers has been debated over years. Here, the structural effect of natural antioxidant from technical Kraft lignin (KL) on the oxidation induction time (OIT) of KL/polypropylene (PP) was quantitatively investigated using correlation analysis model instead of traditional linear fitting model. The correlation coefficient and significance value of their relationship clearly demonstrated the dominating role of non-condensed Phenolic OH (Ph-OH) in improving KL/PP thermal-oxidation stability, subsequently followed by M¯, aliphatic OH/total Ph-OH, condensed Ph-OH and polydispersity.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2017
Protein-based composites have always been desirable biomaterials as they can be fabricated into a wide range of biomaterials with tunable properties, including modulation of mechanical properties and control of cell responses. Both egg white protein (EW) and silk fibroin (SF) are biocompatible, biodegradable, non-toxic and naturally abundant biopolymers. In order to obtain biocompatible composite films with tunable performance, EW and SF were blended at various ratios.
View Article and Find Full Text PDFThe nonisothermal crystallinization kinetic was performed on Polyvinyl alcohol (PVA) mixed with eucalyptus lignosulfonate calcuim (HLS) as the biobased thermal stabilizer, which was systematically analyzed based on Jeziorny model, Ozawa equation and the Mo method. The results indicated that the entire crystallization process took place through two main stages involving the primary and secondary crystallization processes. The Mo method described nonisothermal crystallization behavior well.
View Article and Find Full Text PDFRecently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrated the possibility of using eucalyptus lignosulfonate calcium (HLS) particles as reinforcement in polyvinyl alcohol (PVA) matrix. 41% and 384.
View Article and Find Full Text PDFThe graft copolymerization of eucalyptus lignosulfonate calcium (HLS-Ca) from hardwood and acrylic acid (AA) was investigated by using Fenton agent as a coinitiator. The influences of reaction conditions on grafting parameters i.e.
View Article and Find Full Text PDF