Six electronic states (X (4)Σ(-), A (4)Π, B (4)Δ, (2)Φ, (2)Δ, (2)Σ(+)) of the vanadium monochloride cation (VCl(+)) are described using large basis set coupled cluster theory. For the two lowest quartet states (X (4)Σ(-) and A (4)Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, D¯e, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling.
View Article and Find Full Text PDFThe most-studied organocopper, methylcopper (CH(3)Cu), has been synthesized for the first time as a monomer, free of other ligands or coordinated solvent, and detected using millimeter-wave rotational spectroscopy. The molecule was created in the gas phase by the reaction of copper vapor and several different precursors, including CH(4) and tetramethylsilane. An obvious symmetric top pattern was observed, indicative of C(3)(v) symmetry.
View Article and Find Full Text PDF