Publications by authors named "DeWall R"

Background: Condyle-spanning plate-screw constructs have shown potential to lower the risks of femoral refractures after the healing of a primary Vancouver type B1 periprosthetic femoral fracture. Limited information exists to show how osteoporosis (a risk factor for periprosthetic femoral fractures) may affect the plate fixation during activities of daily living.

Methods: Using total hip arthroplasty and plate-implanted finite element models of three osteoporotic femurs, this study simulated physiological loads of three activities of daily living, as well as osteoporosis associated muscle weakening, and compared the calculated stress/strain, load transfer and local stiffness with experimentally validated models of three healthy femurs.

View Article and Find Full Text PDF

Secondary femoral fractures after the successful plate-screw fixation of a primary Vancouver type B1 periprosthetic femoral fracture (PFF) have been associated with the altered state of stress/strain in the femur as the result of plating. The laterally implanted condyle-spanning plate-screw constructs have shown promises clinically in avoiding secondary bone and implant failures as compared with shorter diaphyseal plates. Though the condyle-spanning plating has been hypothesized to avoid stress concentration in the femoral diaphysis through increasing the working length of the plate, biomechanical evidence is lacking on how plate length may impact the stress/strain state of the implanted femur.

View Article and Find Full Text PDF

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF.

View Article and Find Full Text PDF

Femoral strain is indicative of the potential for bone remodeling (strain energy density, SED) and periprosthetic femoral fracture (magnitude of principal strains) after total hip arthroplasty (THA). Previous modeling studies have evaluated femoral strains in THA-implanted femurs under gait loads including both physiological hip contact force and femoral muscle forces. However, experimental replication of the complex muscle forces during activities of daily living (ADLs) is difficult for in vitro assessment of femoral implant or fixation hardware.

View Article and Find Full Text PDF

Objectives: Evaluate the effects of aging on healthy Achilles tendon and aponeurosis shear wave speed (SWS), a quantitative metric which reflects tissue elasticity.

Methods: Shear wave elastography was used to measure spatial variations in Achilles tendon SWS in healthy young (n = 15, 25 ± 4 years), middle-aged (n = 10, 49 ± 4 years) and older (n = 10, 68 ± 5 years) adults. SWS was separately measured in the free Achilles tendon, soleus aponeurosis and gastrocnemius aponeurosis in resting (R), stretched (dorsiflexed 15° from R) and slack (plantarflexed 15° from R) postures.

View Article and Find Full Text PDF

Background: Intratendinous injections may have important effects on the properties of collagen microarchitecture, morphology, and subsequent mechanical properties of the injected tendon. The purpose of this study was to examine the effects of intratendinous PRP injections; the injectant retention within tendons, the distribution of intratendinous injectant, and whether intratendinous injection or needle fenestration alters tendon morphology or mechanics.

Design: Controlled Laboratory Study.

View Article and Find Full Text PDF

The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to measure tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 wk post-surgery.

View Article and Find Full Text PDF

The purpose of this study was to investigate spatial variations in measured wave speed in the relaxed and stretched Achilles tendons of young and middle-aged adults. Wave speed was measured from the distal Achilles tendon, soleus aponeurosis, medial gastrocnemius aponeurosis and medial gastrocnemius muscle in healthy young (n = 15, aged 25   ±   4 years) and middle-aged (n = 10, aged 49   ±   4 years) adults in resting, dorsiflexed and plantarflexed postures. In both age groups, Achilles tendon wave speed decreased proximally, with the lowest wave speed measured in the gastrocnemius aponeurosis.

View Article and Find Full Text PDF

Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction.

View Article and Find Full Text PDF

Supersonic shear imaging (SSI) is evaluated as a means of visualizing changes in regional tendon elasticity caused by partial tears in a porcine model. Thirty digital flexor tendons were cut to 25% (n = 10), 50% (n = 10) and 75% (n = 10) of the tendon thickness along the deep surface. Tendon elasticity was mapped left of, centered on and right of the tear site before and after tearing from 0% to 2% strain.

View Article and Find Full Text PDF

Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested.

View Article and Find Full Text PDF

Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications.

View Article and Find Full Text PDF

Purpose: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological-pathological correlations using multiple observers.

Methods: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue.

View Article and Find Full Text PDF

Recent advances in elastography have provided several imaging modalities capable of quantifying the elasticity of tissue, an intrinsic tissue property. This information is useful for determining tumour margins and may also be useful for diagnosing specific tumour types. In this study, we used dynamic compression testing to quantify the viscoelastic properties of 16 human hepatic primary and secondary malignancies and their corresponding background tissue obtained following surgical resection.

View Article and Find Full Text PDF

Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation.

View Article and Find Full Text PDF

Elastographic imaging can be used to monitor ablation procedures; however, confident and clear determination of the ablation boundary is essential to ensure complete treatment of the pathological target. To investigate the potential for ablation boundary representation on elastographic images, local variations in the viscoelastic properties in radiofrequency-ablated regions that were formed in vivo in porcine liver tissue were quantified using dynamic indentation. Spatial stiffness maps were then correlated to stained histology, the gold standard for the determination of the ablation periphery or boundary.

View Article and Find Full Text PDF

We have characterized the viscoelastic properties of human cervical tissue through a range of precompressional loads and testing frequencies. Mechanical testing is necessary to develop robust elasticity-based techniques for the diagnosis of cervical abnormalities. The storage modulus (E') and material damping (tan 6) were measured in 13 patients, 40 to 76 years old.

View Article and Find Full Text PDF

This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations.

View Article and Find Full Text PDF

Purpose: Percutaneous thermal ablation is increasingly being used to destroy hepatic tumors in situ. The success of ablative techniques is highly dependent on adequate ablation zone monitoring, and ultrasound-based strain imaging could become a convenient and cost-effective means to delineate ablation zone boundaries. This study investigates in vivo electrode displacement-based strain imaging for monitoring hepatic ablation procedures that are difficult to perform with conventional elastography.

View Article and Find Full Text PDF

The feasibility of using ultrasound-based elastic modulus imaging to visualize thermal ablation zones in an in vivo porcine model is reported. Elastic modulus images of soft tissues are estimated as an inverse optimization problem. Ultrasonically measured displacement data are utilized as inputs to determine an elastic modulus distribution that provides the best match to this displacement field.

View Article and Find Full Text PDF

At the 50th Anniversary of Open Heart Surgery symposium sponsored by the Lillehei Heart Institute of the University of Minnesota in October 2004, the following pioneers in open heart surgery development presented papers of historical interest: Drs. Peter Agre, Robert W. Anderson, William Baumgartner, Alain Carpentier, Aldo Casteneda, Randolph Chitwood, Jr.

View Article and Find Full Text PDF

Intracardiac surgery requires the use of a pump-oxygenator to maintain life while the heart is taken out of its usual circuit. Open-heart surgery became practical with the introduction of perfusion systems in the early 1950s. Many factors merged at this time to initiate the beginnings of open-heart surgery.

View Article and Find Full Text PDF

Open heart surgery was not possible before the early 1950s. The development of controlled cross-circulation at the University of Minnesota in 1953 was a major contributing factor toward operating safely on the interior of the heart. Cross-circulation required connecting a donor's arterial and venous blood vessels to those of a smaller recipient whose heart could then be opened for corrective surgery.

View Article and Find Full Text PDF