Publications by authors named "DeTian Cai"

Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In this study, we investigated the effects of different nitrogen application and planting density treatments on the growth, development, yield, and nitrogen utilization in tetraploid (represented by T7, an indica-japonica conventional allotetraploid rice) and diploid rice (Fengliangyou-4, represented by FLY4, a two-line super hybrid rice used as a reference variety for the approval of super rice with a good grain yield performance).

View Article and Find Full Text PDF

Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2).

View Article and Find Full Text PDF

Grain size is a key factor in determining rice (Oryza sativa) yield, and exploring new pathways to regulate grain size has immense potential to improve yield. In this study, we report that OsCBL5 encodes a calcineurin B subunit protein that significantly promotes grain size and weight. oscbl5 plants produced obviously smaller and lighter seeds.

View Article and Find Full Text PDF

Introduction: Polyploidy is a major force in plant evolution and the domestication of cultivated crops.

Objectives: The study aimed to explore the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene transcription upon rice genome duplication.

Methods: The 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice were compared using high-throughput chromosome conformation capture (Hi-C) analysis.

View Article and Find Full Text PDF

Background: Allopolyploid breeding is an efficient technique for improving the low seed setting rate of autotetraploids in plant breeding and one of the most promising breeding methods. However, there have been few comprehensive studies of the posttranscriptional mechanism in allopolyploids.

Results: By crossing cultivated rice (Oryza sativa, genome AA) with wild rice (Oryza punctata, genome BB), we created hybrid rice lines with different ploidy and genome compositions [diploid hybrid F01 (AB), allotetraploid hybrid F02 (AABB) and F03 (AAAB)].

View Article and Find Full Text PDF

Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice ( L.).

View Article and Find Full Text PDF

Background: Rice is not only an essential food but also a source of high quality protein. Polyploidy is an evolutionary trajectory in plants, and enhancing glutelin by polyploidization is an attractive strategy for improving the nutritional value of rice seeds and presents a great potential for enhancing the commercial value of rice. Elucidating the mechanisms underlying glutelin synthesis and accumulation in tetraploid rice is of great significance.

View Article and Find Full Text PDF

Polyploid rice, first discovered by Japanese scientist Eiiti Nakamori in 1933, has a history of nearly 90 years. In the following years, polyploid rice studies have mainly focused on innovations in breeding theory, induction technology and the creation of new germplasm, the analysis of agronomic traits and nutritional components, the study of gametophyte development and reproduction characteristics, DNA methylation modification and gene expression regulation, distant hybridization and utilization among subspecies, species and genomes. In recent years, lines and neo-tetraploid rice lines with stable high seed setting rate characteristics have been successively selected, breaking through the bottleneck of low seed setting rate of polyploid rice.

View Article and Find Full Text PDF

Seed of rice is an important strategic resource for ensuring the security of China's staple food. Seed deterioration as a result of senescence is a major problem during seed storage, which can cause major economic losses. Screening among accessions in rice germplasm resources for traits such as slow senescence and increased seed longevity during storage is, therefore, of great significance.

View Article and Find Full Text PDF

Male sterile lines play an important role in the utilization of heterosis. To explore and exploit the heterosis of polyploid hybrid rice, two photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice, PS006 and PS012, were bred via chromosome doubling, complex hybridization and self-breeding. The characteristics of these two lines, including the agronomic traits, growth, development, fertility transformation and combining ability, were investigated.

View Article and Find Full Text PDF

Background: Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress.

View Article and Find Full Text PDF

The breeding of polyploid rice made no breakthrough for a long time because of low seed set. The discovery and application of polyploid meiosis stability (PMeS) material played a pivotal role in solving this problem. Our results indicated that genome duplication led to different outcomes in different rice cultivars in terms of pollen fertility, viability, and the accumulation of important physiological substances such as free proline and endogenous hormones.

View Article and Find Full Text PDF

We investigated the molecular characteristics and chromosomal organization of 5S rDNA in the genus Oryza, including diploid and tetraploid species. A phylogenetic tree of Oryza species was constructed based on the non-transcribed spacer sequences of 5S rDNA, and some novel relationships were discovered. Specifically, comparative sequence analysis of 5S rDNA in several wild rice species showed unique characteristics inconsistent with the model of concerted evolution: (1) multiple distinct 5S rDNA types were detected within a species, leading to intraspecific divergence of 5S rDNA; (2) multiple identical 5S rDNA types were shared among species, resulting in interspecies clustering of 5S rDNA types; and (3) intraspecific nucleotide diversity was detected within a 5S rDNA class.

View Article and Find Full Text PDF

Polyploidization is a basic feature of plant evolution. Nearly all of the main food, cotton and oil crops are polyploid. When ploidy levels increase, yields double; this phenomenon suggested a new strategy of rice breeding that utilizes wide crosses and polyploidization dual advantages to breed super rice.

View Article and Find Full Text PDF

Objective: To investigate the effects of physical and chemical factors on callus growth and phillyrin contents of F. suspensa.

Method: The cell growth index and phyllirin yield in different culture condition such as different plant hormones mixed, mediums, light and dark were compared.

View Article and Find Full Text PDF