Publications by authors named "DeMille D"

We present a novel technique to probe electroweak nuclear properties by measuring parity violation (PV) in single molecular ions in a Penning trap. The trap's strong magnetic field Zeeman shifts opposite-parity rotational and hyperfine molecular states into near degeneracy. The weak interaction-induced mixing between these degenerate states can be larger than in atoms by more than 12 orders of magnitude, thereby vastly amplifying PV effects.

View Article and Find Full Text PDF

Relativistic exact two-component coupled-cluster calculations of molecular sensitivity factors for nuclear Schiff moments (NSMs) are reported. We focus on molecules containing heavy nuclei, especially octupole-deformed nuclei. Analytic relativistic coupled-cluster gradient techniques are used and serve as useful tools for identifying candidate molecules that sensitively probe for physics beyond the Standard Model in the hadronic sector.

View Article and Find Full Text PDF
Article Synopsis
  • The genomics era has led to the identification of the ERG gene as a new autosomal dominant predisposition factor for bone marrow failure (BMF) and hematological malignancies (HM), crucial for blood cell development and function.
  • Research found several rare ERG variants associated with thrombocytopenia and various forms of HM, showing onset typically before age 40.
  • Functional studies indicated that many ERG variants disrupt its role as a transcription factor, leading to ineffective blood cell production, with implications for clinical diagnosis and treatment strategies for affected patients and families.
View Article and Find Full Text PDF
Article Synopsis
  • The KINSSHIP syndrome, caused by de novo variants in the AFF3 gene, leads to intellectual disability, mesomelic dysplasia, and horseshoe kidneys, and is characterized by a dominant-negative effect from increased levels of AFF3.
  • Researchers screened intellectual disability cohorts and used animal models to explore additional inheritance patterns and found a range of variants in AFF3, including a de novo duplication linked to a severe phenotype and variants that caused milder symptoms.
  • Analysis of zebrafish models confirmed the pathogenic effects of specific AFF3 variations, showing that some mutations disrupted normal function while others led to more severe conditions in individuals with homozygous or compound heterozygous variants.
View Article and Find Full Text PDF

We report optical trapping of laser-cooled molecules at sufficient density to observe molecule-molecule collisions for the first time in a bulk gas. SrF molecules from a red-detuned magneto-optical trap (MOT) are compressed and cooled in a blue-detuned MOT. Roughly 30% of these molecules are loaded into an optical dipole trap with peak number density n_{0}≈3×10^{10}  cm^{-3} and temperature T≈40  μK.

View Article and Find Full Text PDF

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects.

Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play.

View Article and Find Full Text PDF

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

View Article and Find Full Text PDF

The objective of this research was to verify and qualify what has been traditionally taught as fact during first responder's hazardous materials training regarding response precautions to and the likely behaviors of liquid oxygen (LOx) during a release. Subject matter experts disagreed that these precautions were well-founded in precedent or science. Findings showed that impact pressure causes a reaction in LOx and asphalt under specific conditions.

View Article and Find Full Text PDF

The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs.

View Article and Find Full Text PDF

We demonstrate loading of SrF molecules into an optical dipole trap (ODT) via in-trap Λ-enhanced gray molasses cooling. We find that this cooling can be optimized by a proper choice of relative ODT and cooling beam polarizations. In this optimized configuration, we observe molecules with temperatures as low as 14(1)  μK in traps with depths up to 570  μK.

View Article and Find Full Text PDF

A compact frequency-doubled diode-pumped Nd:YAG master-oscillator power-amplifier laser system with programmable microsecond pulse length has been developed. Analog pulse shaping of the output from a single-frequency continuous-wave Nd:YAG oscillator, and subsequent amplification, allowed the generation of rectangular pulses with pulse lengths on the order of the Nd:YAG fluorescence lifetime. Temporally flat-top pulses of 1064 nm light with 520 mJ pulse energy, 2.

View Article and Find Full Text PDF

We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression.

View Article and Find Full Text PDF

Background: People living with head and neck cancer frequently encounter challenges in their treatment with multimodality therapy and risk of side effects. Ensuring access to and use of interdisciplinary supportive and palliative care is often challenging given the complex needs and unfamiliar treatment experiences.

Objectives: Describe the as an approach to enhance access to and utilization of interdisciplinary supportive and palliative care for people living with head and neck cancer.

View Article and Find Full Text PDF

Purpose: Determine the variant detection rate for ENG, ACVRL1, and SMAD4 in individuals who meet consensus (Curaçao) criteria for the clinical diagnosis of hereditary hemorrhagic telangiectasia.

Methods: Review of HHT center database for individuals with three or more HHT diagnostic criteria, in whom molecular genetic analysis for ENG, ACVRL1, and SMAD4 had been performed.

Results: A variant known or suspected to be causal was detected in ENG in 67/152 (44.

View Article and Find Full Text PDF

We report on a simple tunable laser injection-lock scheme for atomic physics experiments. Seed light from an external cavity diode laser is injected into a high-power fiber-pigtailed diode laser via a fiber optic circulator. High-power outputs (up to ∼600 mW) at the injected frequency have been obtained in a single-mode fiber with tuning over a wide wavelength range (∼15 nm).

View Article and Find Full Text PDF

PAS kinase 1 (Psk1) is a key regulator of respiration in Herein the molecular mechanisms of this regulation are explored through the characterization of its substrate, Centromere binding factor 1 (Cbf1). -deficient yeast displayed a significant decrease in cellular respiration, while PAS kinase-deficient yeast, or yeast harboring a Cbf1 phosphosite mutant (T211A) displayed a significant increase. Transmission electron micrographs showed an increased number of mitochondria in PAS kinase-deficient yeast consistent with the increase in respiration.

View Article and Find Full Text PDF

We demonstrate the efficient transfer of molecules from a magneto-optical trap into a conservative magnetic quadrupole trap. Our scheme begins with a blue-detuned optical molasses to cool SrF molecules to ≈50  μK. Next, we optically pump the molecules into a strongly trapped sublevel.

View Article and Find Full Text PDF

Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z^{0} boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system ^{138}Ba^{19}F. Our sensitivity surpasses that of any previous atomic parity violation measurement.

View Article and Find Full Text PDF

Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published.

View Article and Find Full Text PDF

The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena.

View Article and Find Full Text PDF

The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct.

View Article and Find Full Text PDF

We report the production of ultracold, trapped strontium monofluoride (SrF) molecules with number density and phase-space density significantly higher than previously achieved. These improvements are enabled by three distinct changes to our recently-demonstrated scheme for radio-frequency magneto-optical trapping of SrF: modification of the slowing laser beam geometry, addition of an optical pumping laser, and incorporation of a compression stage to the magneto-optical trap. With these improvements, we observe a trapped sample of SrF molecules at density 2.

View Article and Find Full Text PDF

We report the production of ultracold Rb Cs molecules in their rovibronic ground state X Σ (v=0; J=0), by short-range photoassociation (PA) to the 2 Π , 2 Π , and 3 Σ1+ states. In the PA frequency range from 11650 to 12150 cm (corresponding to energy levels 15500-16000 cm above the bottom of the X potential), we have observed 40 sets of new PA lines. For selected PA states, we investigate vibrational branching, rotational branching, and saturation behavior.

View Article and Find Full Text PDF

We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • The research presents a new method for magneto-optically trapping strontium monofluoride (SrF) molecules, achieving significantly lower temperatures and higher phase space densities than past techniques.
  • The trapping process involves rapidly reversing the polarizations of the lasers and the magnetic field, which destabilizes optical dark states crucial for trapping efficiency.
  • This approach not only increases the number of trapped molecules and their lifetimes but also allows for the attainment of temperatures as low as 400 μK.
View Article and Find Full Text PDF