Publications by authors named "DeMarco V"

The pregnancy of a patient with homozygous familial hypercholesterolemia (HoFH) represents a challenge in the clinical setting due to the high cardiovascular risk of the mother and maternal-fetal morbidity. The lipid lowering drugs are generally contraindicated and lipoprotein apheresis (LA) is the only accepted treatment in HoFH pregnant woman. Liposorber D, an LA technique on whole blood, has good efficacy, safety, and short operative time.

View Article and Find Full Text PDF
Article Synopsis
  • * Management of dyslipidemia in pregnant women, especially those with inherited forms, requires tailored dietary adjustments and may involve pharmacological treatments, although these can be limited by cost and risks.
  • * A personalized, multidisciplinary approach is critical for optimizing health outcomes, with an emphasis on evidence-based practices and understanding the physiological changes in lipid metabolism during pregnancy.
View Article and Find Full Text PDF

Adverse cardiac remodeling contributes to heart failure development and progression, partly due to inappropriate sympathetic nervous system activation. Although β-adrenergic receptor (β-AR) blockade is a common heart failure therapy, not all patients respond, prompting exploration of alternative treatments. Minocycline, an FDA-approved antibiotic, has pleiotropic properties beyond antimicrobial action.

View Article and Find Full Text PDF

Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor.

View Article and Find Full Text PDF

Background: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of young obese and pre-diabetic women and exhibit suppression of cardio-reparative AT2R. Here, we investigated whether NP-6A4, a new AT2R agonist with the FDA designation for pediatric cardiomyopathy, mitigate heart disease in ZDF-F rats by restoring AT2R expression.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) is associated with cardiac dysfunction and predictive of cardiac mortality in obesity, especially in females. Clinical data further support that CMD associates with development of heart failure with preserved ejection fraction and that mineralocorticoid receptor (MR) antagonism may be more efficacious in obese female, versus male, HFpEF patients. Accordingly, we examined the impact of smooth muscle cell (SMC)-specific MR deletion on obesity-associated coronary and cardiac diastolic dysfunction in female mice.

View Article and Find Full Text PDF

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited.

View Article and Find Full Text PDF

Sphingomyelinases ensure ceramide production and play an integral role in cell turnover, inward budding of vesicles and outward release of exosomes. Recent data indicate a unique role for neutral sphingomyelinase (nSMase) in the control of ceramide-dependent exosome release and inflammatory pathways. Further, while inhibition of nSMase in vascular tissue attenuates the progression of atherosclerosis, little is known regarding its role on metabolic signaling and arterial vasomotor function.

View Article and Find Full Text PDF

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD.

View Article and Find Full Text PDF

Obesity affects over 42% of the United States population and exacerbates heart disease, the leading cause of death in men and women. Obesity also increases pro-inflammatory cytokines that cause chronic tissue damage to vital organs. The standard-of-care does not sufficiently attenuate these inflammatory sequelae.

View Article and Find Full Text PDF

Objective: Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy.

View Article and Find Full Text PDF

Chronic inflammation and persistent oxidative stress contribute to the development and progression of vascular proliferative diseases. We hypothesized that the proinflammatory cytokine interleukin (IL)-17A induces oxidative stress and amplifies inflammatory signaling in human aortic smooth muscle cells (SMC) via TRAF3IP2-mediated NLRP3/caspase-1-dependent mitogenic and migratory proinflammatory cytokines IL-1β and IL-18. Further, we hypothesized that these maladaptive changes are prevented by empagliflozin (EMPA), an SGLT2 (Sodium/Glucose Cotransporter 2) inhibitor.

View Article and Find Full Text PDF

Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown.

View Article and Find Full Text PDF

Objective: Obesity is associated with myocardial fibrosis and impaired diastolic relaxation, abnormalities that are especially prevalent in women. Normal coronary vascular endothelial function is integral in mediating diastolic relaxation, and recent work suggests increased activation of the endothelial cell (EC) mineralocorticoid receptor (ECMR) is associated with impaired diastolic relaxation. As the endothelial Na channel (EnNaC) is a downstream target of the ECMR, we sought to determine whether EC-specific deletion of the critical alpha subunit, αEnNaC, would prevent diet induced-impairment of diastolic relaxation in female mice.

View Article and Find Full Text PDF
Article Synopsis
  • Proximal tubular epithelial cells in the kidneys are essential for regulating glucose levels, with sodium-glucose co-transporters (SGLT) being crucial in this process.
  • Recent studies showed that high glucose levels suppress RECK, an important protein that protects against kidney damage, while the SGLT2 inhibitor empagliflozin can reverse this suppression.
  • The mechanisms behind RECK suppression involve oxidative stress and inflammation, but treatments like empagliflozin may help restore RECK levels and mitigate kidney damage in conditions like diabetic kidney disease.
View Article and Find Full Text PDF

Objective: Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy.

Methods: Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg day; ZOSV); and Group 3: valsartan (val) (31 mg kg day; ZOV).

View Article and Find Full Text PDF

Type 2 diabetes is associated with diabetic cognopathy. Anti-hyperglycemic sodium glucose transporter 2 (SGLT2) inhibitors have shown promise in reducing cognitive impairment in mice with type 2 diabetes mellitus. We recently described marked ultrastructural (US) remodeling of the neurovascular unit (NVU) in type 2 diabetic / female mice.

View Article and Find Full Text PDF

Rapamycin (Rap), an inhibitor of mTORC1, reduces obesity and improves lifespan in mice. However, hyperglycemia and lipid disorders are adverse side effects in patients receiving Rap treatment. We previously reported that diabetes induces pansuppression of cardiac cytokines in Zucker obese rats (ZO-C).

View Article and Find Full Text PDF
Article Synopsis
  • SMARD1 is an infantile genetic disorder that leads to muscle weakness and breathing difficulties due to neuron degeneration.
  • A study compared the effectiveness of two delivery methods (intravenous vs. intracerebroventricular) for a gene therapy using AAV9- in a mouse model of SMARD1.
  • Both delivery methods improved survival and body weight, but only the intracerebroventricular method enhanced muscle and motor functions, while intravenous delivery showed partial benefits for cardiac function but not for hindlimb strength.
View Article and Find Full Text PDF

Background: Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db).

View Article and Find Full Text PDF

Multiple population based analyses have demonstrated a high incidence of cardiovascular disease (CVD) and cardiovascular (CV) mortality in subjects with T2DM that reduces life expectancy by as much as 15 years. Importantly, the CV system is particularly sensitive to the metabolic and immune derangements present in obese pre-diabetic and diabetic individuals; consequently, CV dysfunction is often the initial CV derangement to occur and promotes the progression to end organ/tissue damage in T2DM. Specifically, diabetic CVD can manifest as microvascular complications, such as nephropathy, retinopathy, and neuropathy, as well as, macrovascular impairments, including ischemic heart disease, peripheral vascular disease, and cerebrovascular disease.

View Article and Find Full Text PDF

In clinical trials of two rifamycin antibiotics (rifampin and rifapentine) for treating tuberculosis (TB), patients with cavitary lung lesions did not appear to derive benefit from rifapentine. Rifapentine was found not to outperform rifampin, despite a lower minimum inhibitory concentration against in mouse models of TB. To understand these findings, we have developed a rabbit model of TB that reliably develops lung cavities with features similar to those of patients with pulmonary cavitary TB.

View Article and Find Full Text PDF

Population studies have shown that compared to diabetic men, diabetic women are at a higher risk of cardiovascular disease. However, the mechanisms underlying this gender disparity are unclear. Our studies in young murine models of type 2 diabetes mellitus (T2DM) and cardiovascular disease show that diabetic male rats develop increased cardiac fibrosis and suppression of intracardiac anti-fibrotic cytokines, while premenopausal diabetic female rats do not.

View Article and Find Full Text PDF

Objectives: Pituitary-dependent hyperadrenocorticism is the most common cause of naturally occurring hypercortisolism in dogs. CRHR1 expression in human and dog corticotrophinomas suggested that this gene affects pituitary tumorigenesis. The present study aimed to investigate mutations in the CRHR1 coding region in poodles with pituitary-dependent hyperadrenocorticism.

View Article and Find Full Text PDF