Background: Entry into the interventional pulmonary (IP) fellowship requires prerequisite training in pulmonary and critical care medicine (PCCM) fellowship in the United States. IP fellowship has become standardized, but the prerequisite training may be quite variable depending on the learner's exposure to IP during their PCCM fellowship. A survey study was conducted to identify potential foundational knowledge and/or skills gaps of new fellows entering IP fellowships.
View Article and Find Full Text PDFIntracellular pathogens that replicate in host myeloid cells have devised ways to inhibit the cell's killing machinery. Pyroptosis is one of the host strategies used to reduce the pathogen replicating niche and thereby control its expansion. The intracellular Leishmania parasites can survive and use neutrophils as a silent entry niche, favoring subsequent parasite dissemination into the host.
View Article and Find Full Text PDFJ Clin Transl Sci
February 2024
Digital badges can provide condensed competency-based knowledge enabling individuals a chance to explore specialized careers in clinical research. A digital badge can be an efficient pathway to introduce clinical research job roles and educate a larger diverse workforce for clinical research coordinator positions at AMCs. The New Jersey Alliance for Clinical and Translational Science (NJ ACTS) developed a digital badge with potential to broaden exposure to training opportunities for CRCs and improve their prospects for a career at Rutgers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
Gasdermins (GSDMs) share a common functional domain structure and are best known for their capacity to form membrane pores. These pores are hallmarks of a specific form of cell death called pyroptosis and mediate the secretion of pro-inflammatory cytokines such as interleukin 1β (IL1β) and interleukin 18 (IL18). Thereby, Gasdermins have been implicated in various immune responses against cancer and infectious diseases such as acute Typhimurium (Tm) gut infection.
View Article and Find Full Text PDFChronic Obstructive Pulmonary Disease (COPD) is a highly prevalent and morbid disease marked by irreversible structural changes in the lungs. Bronchoscopic therapies have significantly expanded the treatment armamentarium for patients with persistent symptoms by reducing the physiologic detriments of hyperinflation in a less invasive fashion than surgical lung volume reduction. The spectrum of bronchoscopic techniques to reduce hyperinflation includes endobronchial valves, coils, thermal ablation, and biologic sealants.
View Article and Find Full Text PDFThe primary objective of this study was to assess the negative predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swabs in MRSA diabetic foot infections. MEDLINE and Cochrane Library were searched from inception to May 1, 2020. The following search string was used: (methicillin-resistant S.
View Article and Find Full Text PDFCytosolic pattern recognition receptors trigger pyroptosis by detection of danger- or pathogen-associated molecular patterns. These receptors initiate the assembly of inflammasomes, multimeric protein complexes that drive caspase-1 activation. Active caspase-1 cleaves the proinflammatory cytokines IL-1β and IL-18 and the pore-forming protein gasdermin-D (GSDMD) thereby liberating its N-terminal domain.
View Article and Find Full Text PDFLewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored.
View Article and Find Full Text PDFAbout thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication.
View Article and Find Full Text PDFOptical transparency is increased by the Pauli principle in ultracold atom gases.
View Article and Find Full Text PDFCell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications.
View Article and Find Full Text PDFCellular function depends on the correct folding of proteins inside the cell. Heat-shock proteins 70 (Hsp70s), being among the first molecular chaperones binding to nascently translated proteins, aid in protein folding and transport. They undergo large, coordinated intra- and interdomain structural rearrangements mediated by allosteric interactions.
View Article and Find Full Text PDFInjection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense.
View Article and Find Full Text PDFGasdermin D (GSDMD) is a pore-forming protein that promotes pyroptosis and release of proinflammatory cytokines. Recent studies revealed that apoptotic caspase-8 directly cleaves GSDMD to trigger pyroptosis. However, the molecular requirements for caspase-8-dependent GSDMD cleavage and the physiological impact of this signaling axis are unresolved.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2020
A barrier to realizing the potential of molecules for quantum information science applications is a lack of high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected through polarization rotation of an off-resonant probe laser beam.
View Article and Find Full Text PDFThe human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS.
View Article and Find Full Text PDFInfections with bacterial pathogens often results in the initiation of programmed cell death as part of the host innate immune defense, or as a bacterial virulence strategy. Induction of host cell death is controlled by an elaborate network of innate immune and cell death signaling pathways and manifests in different morphologically and functionally distinct forms of death, such as apoptosis, necroptosis, NETosis and pyroptosis. The mechanism by which host cell death restricts bacterial replication is highly cell-type and context depended, but its physiological importance is highlighted the diversity of strategies bacterial pathogens use to avoid induction of cell death or to block cell death signaling pathways.
View Article and Find Full Text PDFCaspase-1 drives a lytic inflammatory cell death named pyroptosis by cleaving the pore-forming cell death executor gasdermin-D (GSDMD). deficiency, however, only delays cell lysis, indicating that caspase-1 controls alternative cell death pathways. Here, we show that in the absence of GSDMD, caspase-1 activates apoptotic initiator and executioner caspases and triggers a rapid progression into secondary necrosis.
View Article and Find Full Text PDFProgrammed cell death is a key mechanism involved in several biological processes ranging from development and homeostasis to immunity, where it promotes the removal of stressed, damaged, malignant or infected cells. Abnormalities in the pathways leading to initiation of cell death or removal of dead cells are consequently associated with a range of human diseases including infections, autoinflammatory disease, neurodegenerative disease and cancer. Apoptosis, pyroptosis and NETosis are three well-studied modes of cell death that were traditionally believed to be independent of one another, but emerging evidence indicates that there is extensive cross-talk between them, and that all three pathways can converge onto the activation of the same cell death effector-the pore-forming protein Gasdermin D (GSDMD).
View Article and Find Full Text PDFInflammasomes are multimeric protein complex that assemble in the cytosol upon microbial infection or cellular stress. Upon activation, inflammasomes drive the maturation of proinflammatory cytokines, IL-1β and IL-18, and also activate the pore-forming protein, gasdermin D to initiate a form of lytic cell death known as "pyroptosis". Pannexin-1 is channel-forming glycoprotein that promotes membrane permeability and ATP release during apoptosis; and was implicated in canonical NLRP3 or noncanonical inflammasome activation.
View Article and Find Full Text PDFApoptosis can promote inflammation by triggering activation of the NLRP3 inflammasome (NLR family, pyrin domain containing 3). However, the molecular mechanisms regulating these processes are ill-defined. We recently reported that pannexin-1 is required to promote NLRP3 inflammasome assembly.
View Article and Find Full Text PDFFragile X syndrome, the most common inherited form of intellectual disability, is caused by the CGG trinucleotide expansion in the 5'-untranslated region of the Fmr1 gene on the X chromosome, which silences the expression of the fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA, which encodes for the postsynaptic density protein 95, and together with microRNA-125a to mediate the reversible inhibition of the PSD-95 mRNA translation in neurons. The miR-125a binding site within the PSD-95 mRNA 3'-untranslated region (UTR) is embedded in a G-rich region bound by FMRP, which we have previously demonstrated folds into two parallel G-quadruplex structures.
View Article and Find Full Text PDF