Publications by authors named "DeLorey T"

Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15 macrophages, PRDM16 dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of T17 cells.

View Article and Find Full Text PDF

In healthy skin, a cutaneous immune system maintains the balance between tolerance towards innocuous environmental antigens and immune responses against pathological agents. In atopic dermatitis (AD), barrier and immune dysfunction result in chronic tissue inflammation. Our understanding of the skin tissue ecosystem in AD remains incomplete with regard to the hallmarks of pathological barrier formation, and cellular state and clonal composition of disease-promoting cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of B cells in anti-tumor immunity, challenging the focus on T and natural killer cells in cancer immunotherapies.
  • Researchers identified a specific subset of B cells that expand in lymph nodes during melanoma growth, characterized by the expression of TIM-1 and various co-inhibitory molecules.
  • The findings suggest that targeting TIM-1 on B cells can enhance anti-tumor responses and facilitate the activation of tumor-specific T cells, promoting tumor inhibition.
View Article and Find Full Text PDF

Whole chromosome losses resulting in near-haploid karyotypes are found in a rare subgroup of treatment-refractory acute lymphoblastic leukemia. To systematically dissect the unique physiology and uncover susceptibilities that can be exploited in near-haploid leukemia, we leveraged single-cell RNA-Seq and computational inference of cell cycle stages to pinpoint key differences between near-haploid and diploid leukemia cells. Combining cell cycle stage-specific differential expression with gene essentiality scores from a genome-wide CRISPR-Cas9-mediated knockout screen, we identified the homologous recombination pathway component RAD51B as an essential gene in near-haploid leukemia.

View Article and Find Full Text PDF

Plasma cells (PCs) constitute a significant fraction of colonic mucosal cells and contribute to inflammatory infiltrates in ulcerative colitis (UC). While gut PCs secrete bacteria-targeting IgA antibodies, their role in UC pathogenesis is unknown. We performed single-cell V(D)J- and RNA-seq on sorted B cells from the colon of healthy individuals and patients with UC.

View Article and Find Full Text PDF
Article Synopsis
  • - We studied 1,130 E3 ligases and their roles in the inflammatory response of primary dendritic cells using Perturb-seq, revealing their significant impact on different types of dendritic cells and macrophages.
  • - E3 ligases and their adaptors work together but interact with different substrate recognition adaptors, influencing various processes in dendritic cell development and function.
  • - A deep learning model named comβVAE was developed to predict outcomes of new E3 ligase combinations, showing that the E3 regulatory network is linked to genetic variations and abnormal gene expression in immune-related human diseases.
View Article and Find Full Text PDF

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells.

View Article and Find Full Text PDF

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm.

View Article and Find Full Text PDF

Interleukin-23 receptor plays a critical role in inducing inflammation and autoimmunity. Here, we report that Th1-like cells differentiated in vitro with IL-12 + IL-21 showed similar IL-23R expression to that of pathogenic Th17 cells using eGFP reporter mice. Fate mapping established that these cells did not transition through a Th17 cell state prior to becoming Th1-like cells, and we observed their emergence in vivo in the T cell adoptive transfer colitis model.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with limited treatment options, and current methods for understanding its molecular characteristics are inadequate.
  • Researchers used advanced techniques, including single-nucleus RNA sequencing and digital spatial profiling, to analyze 43 PDAC tumors, revealing key cellular subtypes and their interactions.
  • They identified new malignant cell programs linked to poor outcomes and established three distinct multicellular communities, providing insights that could improve patient stratification in clinical trials and guide targeted therapies.
View Article and Find Full Text PDF

Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 infection results in varying immune responses, with neutralizing antibodies generally protecting against reinfection.
  • The study investigated mild cases linked to a single event, revealing sex-specific differences in T cell responses and their correlation with antibody levels, particularly in males.
  • Additionally, single-cell immunoprofiling indicated variations in type I IFN signaling that may influence antibody production, emphasizing the importance of sex-based factors in immune responses to SARS-CoV-2.
View Article and Find Full Text PDF

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation.

View Article and Find Full Text PDF

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors.

View Article and Find Full Text PDF
Article Synopsis
  • The CD155/TIGIT axis plays a significant role in how tumors evade the immune system, specifically in conditions like pancreatic cancer, which is notoriously difficult to treat.
  • Research confirms that many pancreatic tumors have strong neoepitopes that could trigger an immune response, but T cells in these tumors show dysfunction similar to patients.
  • By modifying the CD155/TIGIT interaction, the study identifies a promising immunotherapy approach combining TIGIT/PD-1 co-blockade with CD40 agonism, which has shown strong anti-tumor effects and is ready for clinical trials.
View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the pathophysiology of COVID-19 by analyzing single-cell and spatial atlases from various organ autopsy samples of individuals who died from the virus.
  • Findings revealed significant changes in lung tissue, including impaired tissue regeneration and inflammation, indicating how SARS-CoV-2 affects different cell types.
  • The research provides crucial insights into the biological impact of severe COVID-19, aiding in the development of potential new treatments.
View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic has led to over 1 million deaths worldwide, primarily due to severe lung injuries and multiple organ failures, but there is limited understanding of the immune responses involved in COVID-19.
  • Researchers collected and analyzed over 420 tissue samples from various organs of 17 COVID-19 victims, utilizing advanced techniques like RNA sequencing to map out cellular changes related to their illness.
  • Significant findings include alterations in lung tissue cell types, such as the increase of specific progenitor cells and myofibroblasts, indicating impaired tissue repair and failed regenerative processes in severely damaged lungs.
View Article and Find Full Text PDF

Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice.

View Article and Find Full Text PDF

The outcome of fungal infections depends on interactions with innate immune cells. Within a population of macrophages encountering Candida albicans, there are distinct host-pathogen trajectories; however, little is known about the molecular heterogeneity that governs these fates. Here we developed an experimental system to separate interaction stages and single macrophage cells infected with C.

View Article and Find Full Text PDF

is a pathogenic yeast of humans and other animals which causes disease predominantly in immunocompetent hosts. Infection begins when aerosolized yeast or spores enter the body, triggering an immune response, including engulfment by macrophages. To understand the early transcriptional signals in both the yeast and its mammalian host, we performed a time-course dual-transcriptome sequencing (RNA-seq) experiment for four lineages of (lineages VGI to IV) interacting with mouse macrophages at 1, 3, and 6 h postinfection.

View Article and Find Full Text PDF

Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells.

View Article and Find Full Text PDF

Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species.

View Article and Find Full Text PDF
Article Synopsis
  • Almost all humans carry Candida albicans, which can turn pathogenic in immunocompromised individuals, leading to severe infections.
  • Researchers identified two important transcription factors, Zcf15 and Zcf29, that are crucial for the virulence of C. albicans, showing that knockout mutants of these factors are more sensitive to oxidative stress.
  • The study highlights how these factors help the fungus adapt to its host environment by regulating nutrient balance and detoxifying reactive oxygen species, offering insights into the evolution and behavior of Candida infections.
View Article and Find Full Text PDF

Protein expression is regulated by the production and degradation of messenger RNAs (mRNAs) and proteins, but their specific relationships remain unknown. We combine measurements of protein production and degradation and mRNA dynamics so as to build a quantitative genomic model of the differential regulation of gene expression in lipopolysaccharide-stimulated mouse dendritic cells. Changes in mRNA abundance play a dominant role in determining most dynamic fold changes in protein levels.

View Article and Find Full Text PDF