Publications by authors named "DeLano F"

The mechanism that triggers the progressive dysregulation of cell functions, inflammation, and breakdown of tissues during aging is currently unknown. We propose here a previously unknown mechanism due to tissue autodigestion by the digestive enzymes. After synthesis in the pancreas, these powerful enzymes are activated and transported inside the lumen of the small intestine to which they are compartmentalized by the mucin/epithelial barrier.

View Article and Find Full Text PDF

For the first time, the capture of the planar antiaromatic parent benzene dianion in between two trivalent rare earth (RE) metal cations (RE), each stabilized by two guanidinate ligands, is reported. The synthesized inverse-sandwich complexes [{(MeSi)NC(NPr)}RE](μ-η : η-CH), (RE=Y (1), Dy (2), and Er (3)) were crystallized from aprotic solvents and feature a remarkably planar parent benzene dianion, previously not encountered for any metal ion prone to low or absent covalency. The -2 charge localization at the benzene ligand was deduced from the results obtained by single-crystal X-ray diffraction analyses, spectroscopy, magnetometry, and Density Functional Theory (DFT) calculations.

View Article and Find Full Text PDF

The seminal isolation of a dinuclear rare earth metal complex comprising a bridging 2,2'-azobispyridyl radical anion, [(CpY)(μ-abpy˙)](BPh), is presented, which was obtained from a one-electron chemical oxidation of [(CpY)(μ-abpy)]. The unprecedented compounds were characterized by crystallography, spectroscopy and DFT computations. The radical character was proven by EPR spectroscopy.

View Article and Find Full Text PDF

The generation of noncovalent intermolecular interactions represents a powerful method to control molecular vibrations and rotations. Combining these with the axial ligand field enforced by the metallocene ligand scaffold provides a dual-pronged approach in controlling the magnetic-relaxation pathways for dysprosium-based single-molecule magnets (SMMs). Here, we present the first implementation of 2,3,4,5-tetraiodopyrrole (TIPH) in its anionic form [TIP] as a ligand in three isostructural rare-earth metal complexes Cp*RE(TIP) (1-RE, RE = Y, Gd, and Dy; Cp* = pentamethylcylopentadienyl), where the TIP ligand binds through the nitrogen and one iodine atom κ(N,I) to the metal centre.

View Article and Find Full Text PDF

Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE-coordination chemistry.

View Article and Find Full Text PDF

Ancillary ligand scaffolds that sufficiently stabilize a metal ion to allow its coordination to an open-shell ligand are scarce, yet their development is essential for next-generation spin-based materials with topical applications in quantum information science. To this end, a synthetic challenge must be met: devising molecules that enable the binding of a redox-active ligand through facile displacement and clean removal of a weakly coordinating anion. Here, we probe the accessibility of unprecedented radical-containing rare-earth guanidinate complexes by combining our recently discovered yttrium tetraphenylborate complex [{(MeSi)NC(NPr)}Y][(μ-η-Ph)(BPh)] with the redox-active ligands 2,2'-bipyridine (bpy) and 2,2'-bis(benzimidazole) (Bbim), respectively, under reductive conditions.

View Article and Find Full Text PDF

The π- and σ-basicity of the pyrrolyl ligand affords several coordination modes. A sterically encumbering coordination sphere around metal centers may foster new coordination modes for the pyrrolyl ligand. Here, we present three dinuclear rare earth complexes [Cp*RE(μ-pyr)], [RE = Y (), La (), Dy (); Cp* = pentamethylcyclopentadienyl, pyr = pyrrolyl], which were synthesized through a protonolysis reaction between allyl complexes and H-pyrrole.

View Article and Find Full Text PDF

A room temperature stable complex formulated as Y(NHAr*) has been prepared, where Ar* = 2,6-(2,4,6-(Pr)CH)CH, by KC reduction of ClY(NHAr*). Based on EPR evidence, Y(NHAr*) is an example of a d Y(ii) complex with significant delocalization of the unpaired electron density from the metal to the ligand. The isolation of molecular divalent metal complexes is challenging for rare earth elements such as yttrium.

View Article and Find Full Text PDF

Isolable heteroleptic tris(metallocenes) containing five-membered and larger rings remain extremely scarce. The utilization of tripositive rare-earth-metal ions with ionic radii >1 Å allowed access to unprecedented and sterically congested dibenzocyclooctatetraenyl (dbCOT) metallocenes, [K(crypt-222)][CpRE(η-dbCOT)] (RE = Y (), Dy (); Cp = tetramethylcyclopentadienyl), through a salt metathesis reaction involving CpRE(BPh) and the potassium salt of the dbCOT dianion. The solid-state structures were investigated by single-crystal X-ray diffraction, magnetometry, and IR spectroscopy and provided evidence for the first crystallographically characterized (dbCOT) anion in a complex containing d- or f-block metals.

View Article and Find Full Text PDF

Purpose: Trauma and hemorrhagic shock (T/HS) is a major cause of morbidity and mortality. Existing treatment options are largely limited to source control and fluid and blood repletion. Previously, we have shown that enteral protease inhibition improves outcomes in experimental models of T/HS by protecting the gut from malperfusion and ischemia.

View Article and Find Full Text PDF

Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood.

View Article and Find Full Text PDF

There is a need to develop markers for early detection of organ failure in shock that can be noninvasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography.

View Article and Find Full Text PDF

It has been previously shown that intestinal proteases translocate into the circulation during hemorrhagic shock and contribute to proteolysis in distal organs. However, consequences of this phenomenon have not previously been investigated using high-throughput approaches. Here, a shotgun label-free quantitative proteomic approach was utilized to compare the peptidome of plasma samples from healthy and hemorrhagic shock rats to verify the possible role of uncontrolled proteolytic activity in shock.

View Article and Find Full Text PDF

Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction.

View Article and Find Full Text PDF

Physiological shock and subsequent multi-organ failure is one of the most important medical problems from a mortality point of view. No agreement exists for mechanisms that lead to the relative rapid cell and organ failure during this process and no effective treatment. We postulate that the digestive enzymes synthesized in the pancreas and transported in the lumen of the small intestine as requirement of normal food digestion play a central role in multi-organ failure.

View Article and Find Full Text PDF

Shock, sepsis, and multiorgan failure are associated with inflammation, morbidity, and high mortality. The underlying pathophysiological mechanism is unknown, but evidence suggests that pancreatic enzymes in the intestinal lumen autodigest the intestine and generate systemic inflammation. Blocking these enzymes in the intestine reduces inflammation and multiorgan dysfunction.

View Article and Find Full Text PDF

The SHR, a genetic model for hypertension and the metabolic syndrome, has attenuated leukocyte adhesion to the postcapillary endothelium by an unknown mechanism. Based on recent evidence of elevated levels of MMPs in plasma and on microvascular endothelium of the SHR with cleavage of several receptor types, we hypothesize that the reduced leukocyte-endothelial interaction is a result of enhanced proteolytic cleavage of P-selectin on the postcapillary endothelium and PSGL-1 on leukocytes. The attenuated rolling interactions of SHR leukocytes with the endothelium were restored by chronic treatment with a broad-spectrum MMP inhibitor (CGS) for 24 weeks.

View Article and Find Full Text PDF

One of the key features of cardiovascular complications, such as hypertension or diabetes, is that they often appear at the same time in the same individual together with other forms of co-morbidities. While clinically a recognized phenomenon, no molecular mechanism for such co-morbidities has received universal acceptance. We propose a new hypothesis that provides a molecular basis for co-morbidities in hypertension due to unchecked proteolytic activity and receptor destruction.

View Article and Find Full Text PDF

Background: Prompt diagnosis and treatment of acute mesenteric ischemia (AMI) requires a high index of suspicion for timely management. Poor clinical outcomes and delays in surgical treatment are demonstrated even in modern clinical series. Recognition of exhaled volatile organic compounds (VOCs) specific to AMI may facilitate early detection and diagnosis and improve patient outcomes.

View Article and Find Full Text PDF

A complication of the spontaneously hypertensive rat (SHR) is microvascular rarefaction, defined by the loss of microvessels. However, the molecular mechanisms involved in this process remain incompletely identified. Recent work in our laboratory suggests that matrix metalloproteinases (MMPs) may play a role by cleavage of the vascular endothelial growth factor receptor 2 (VEGFR-2).

View Article and Find Full Text PDF

BACKGROUND: One of the most important unresolved issues in diabetes is the mechanism for the attenuated response to insulin, i.e. insulin resistance.

View Article and Find Full Text PDF

Physiological fluid shear stress evokes pseudopod retraction in normal leukocytes by a mechanism that involves the formyl peptide receptor (FPR) as mechanosensor. In hypertensives, such as the spontaneously hypertensive rat (SHR), leukocytes lack the normal fluid shear response. The increased activity of matrix metalloproteinases (MMPs, including MMP-9) in SHR plasma is associated with cleavage of several cell membrane receptors.

View Article and Find Full Text PDF

Besides an elevated blood pressure, the spontaneously hypertensive rat (SHR) has multiple microvascular complications including endothelial apoptosis with capillary rarefaction. The SHR also has elevated levels of proteolytic (e.g.

View Article and Find Full Text PDF

Arterial hypertension is associated with organ dysfunctions, but the mechanisms are uncertain. We hypothesized that enhanced proteolytic activity in the microcirculation of spontaneously hypertensive rats (SHRs) may be a pathophysiological mechanism causing cell membrane receptor cleavage and examine this for 2 different receptors. Immunohistochemistry of matrix-degrading metalloproteinases (matrix metalloproteinase [MMP]-9) protein shows enhanced levels in SHR microvessels, mast cells, and leukocytes compared with normotensive Wistar-Kyoto rats.

View Article and Find Full Text PDF

Background: The primary valve system in the initial lymphatics prevents fluid transport from the initial lymphatics back into the interstitium. The authors hypothesize that since the primary valves are made up of an extraordinarily thin endothelium, they are readily compromised by mechanical or biochemical inflammatory stimuli. Thus, the opening dimension of the primary valves and their ability to prevent reflux into the interstitium during inflammation were investigated.

View Article and Find Full Text PDF