Shared research resources, also known as core facilities, serve a crucial role in supporting research, training, and other needs for their respective institutions. In response to the coronavirus disease (COVID-19) pandemic, all but the most critical laboratory research was halted in many institutions around the world. The Association of Biomolecular Resource Facilities conducted 2 surveys to understand and document institutional responses to the COVID-19 pandemic from core facility perspectives.
View Article and Find Full Text PDFA unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions.
View Article and Find Full Text PDFSynaptic activity is modulated by the activation of neuromodulator receptors present in dendrites of neurons. The majority of neuromodulator receptors are G protein coupled receptors (GPCRs), in which membrane trafficking regulates their activities. Membrane trafficking of neuromodulator receptors and their signaling occurs on a rapid time scale and emerging studies indicate that neuromodulator receptors function not just from the plasma membrane but also from the endocytic compartments.
View Article and Find Full Text PDFTo understand visual functions mediated by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs), it is important to elucidate axonal projections from these cells into the brain. Initial studies reported that melanopsin is expressed only in retinal ganglion cells within the eye. However, recent studies in Opn4-Cre mice revealed Cre-mediated marker expression in multiple brain areas.
View Article and Find Full Text PDFIn absence of their natural ligand, 11-cis-retinal, cone opsin G-protein-coupled receptors fail to traffic normally, a condition associated with photoreceptor degeneration and blindness. We created a mouse with a point mutation (F81Y) in cone S-opsin. As expected, cones with this knock-in mutation respond to light with maximal sensitivity red-shifted from 360 to 420 nm, consistent with an altered interaction between the apoprotein and ligand, 11-cis-retinal.
View Article and Find Full Text PDFThe organization and connections of the primary visual area (V1) were examined in mice that lacked functional rods (Gnat-/-), but had normal cone function. Because mice are nocturnal and rely almost exclusively on rod vision for normal behaviors, the Gnat-/- mice used in the present study are considered functionally blind. Our goal was to determine if visual cortex is reorganized in these mice, and to examine the neuroanatomical connections that may subserve reorganization.
View Article and Find Full Text PDFA recombinant rabies virus was used as a retrograde tracer to allow complete filling of the axonal and dendritic arbors of identified projection neurons in layer 5 of mouse primary somatosensory cortex (S1) in vivo. Previous studies have distinguished three types of layer 5 pyramids in S1: tall-tufted, tall-simple, and short. Layer 5 pyramidal neurons were retrogradely labeled from several known targets: contralateral S1, superior colliculus, and thalamus.
View Article and Find Full Text PDFBrain Res Bull
March 2008
One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex.
View Article and Find Full Text PDFIn the developing neocortex, pyramidal neurons use molecular cues to form axonal arbors selectively in the correct layers. Despite the utility of mice for molecular and genetic studies, little work has been done on the development of layer-specific axonal arborizations of pyramidal neurons in mice. We intracellularly labeled and reconstructed the axons of layer 2/3 and layer 5 pyramidal neurons in slices of primary somatosensory cortex from C57Bl6 mice on postnatal days 7-21.
View Article and Find Full Text PDFThe cerebellum provides an excellent system for understanding how afferent and target neurons coordinate sequential intercellular signals and cell-autonomous genetic programs in development. Mutations in the orphan nuclear receptor RORalpha block Purkinje cell differentiation with a secondary loss of afferent granule cells. We show that early transcriptional targets of RORalpha include both mitogenic signals for afferent progenitors and signal transduction genes required to process their subsequent synaptic input.
View Article and Find Full Text PDF