Accurate detection of tumor margins is essential for successful cancer surgery. While indocyanine green (ICG)-based near-infrared (NIR) fluorescence (FL) surgical navigation enhances the visual identification of tumor margins, its accuracy remains subjective, underscoring the need for quantitative approaches. In this study, a high spatiotemporal fluorescence lifetime (FLT) imaging technology is developed in the second near-infrared window (NIR-II, 1000-1700 nm) for quantitative tumor margin detection, utilizing folate receptor-targeted ICG nanoprobes (FPH-ICG).
View Article and Find Full Text PDFSurgical resection remains the primary treatment modality for glioblastoma (GBM); however, the infiltrative nature of GBM margins complicates achieving complete tumor removal. Additionally, the blood-brain barrier (BBB) poses a formidable challenge to effective probe delivery, thereby hindering precise imaging-guided surgery. Here, we introduce hybrid cell membrane-coated indocyanine green (ICG) liposomes (HM-Lipo-ICG) as biomimetic near-infrared (NIR) fluorescent probes for targeted BBB penetration and accurate delineation of infiltrative GBM margins.
View Article and Find Full Text PDFHierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system.
View Article and Find Full Text PDFMultiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection.
View Article and Find Full Text PDFFungal Biol Biotechnol
July 2023
Background: Fungi have been utilized for centuries in medical, agricultural, and industrial applications. Development of systems biology techniques has enabled the design and metabolic engineering of these fungi to produce novel fuels, chemicals, and enzymes from renewable feedstocks. Many genetic tools have been developed for manipulating the genome and creating mutants rapidly.
View Article and Find Full Text PDFThe accurate diagnosis and treatment of prostate cancer at an early stage is crucial to reduce mortality rates. However, the limited availability of theranostic agents with active tumor-targeting abilities hinders imaging sensitivity and therapeutic efficiency. To address this challenge, we have developed biomimetic cell membrane-modified FeO nanoclusters implanted in polypyrrole (CM-LFPP), achieving photoacoustic/magnetic resonance dual-modal imaging-guided photothermal therapy of prostate cancer.
View Article and Find Full Text PDFGlioma as a highly lethal tumor is difficult to treat since the blood-brain barrier (BBB) restricts drug delivery into the brain. It remains a huge need for developing strategies allowing drug passage across the BBB with high efficacy. Herein, we engineered drug-loaded apoptotic bodies (Abs) loaded with doxorubicin (Dox) and indocyanine green (ICG) to cross the BBB for the treatment of glioma.
View Article and Find Full Text PDFMonitoring X-ray radiation in the gastrointestinal tract can enhance the precision of radiotherapy in patients with gastrointestinal cancer. Here we report the design and performance, in the gastrointestinal tract of rabbits, of a swallowable X-ray dosimeter for the simultaneous real-time monitoring of absolute absorbed radiation dose and of changes in pH and temperature. The dosimeter consists of a biocompatible optoelectronic capsule containing an optical fibre, lanthanide-doped persistent nanoscintillators, a pH-sensitive polyaniline film and a miniaturized system for the wireless readout of luminescence.
View Article and Find Full Text PDFTargeted therapy of Parkinson's disease is an important challenge because of the blood-brain barrier limitation. Here, we propose a natural killer cell membrane biomimetic nanocomplex (named BLIPO-CUR) delivered via the meningeal lymphatic vessel (MLV) route to further the therapeutic efficacy of Parkinson's disease. The membrane incorporation enables BLIPO-CUR to target the damaged neurons, thus improving their therapeutic efficacy through clearing reactive oxygen species, suppressing the aggregation of α-synuclein, and inhibiting the spread of excess α-synuclein species.
View Article and Find Full Text PDFCoronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models.
View Article and Find Full Text PDFPlant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within root hair cells.
View Article and Find Full Text PDFRadioimmunotherapy (RIT) is an advanced physical therapy used to kill primary cancer cells and inhibit the growth of distant metastatic cancer cells. However, challenges remain because RIT generally has low efficacy and serious side effects, and its effects are difficult to monitor in vivo. This work reports that Au/Ag nanorods (NRs) enhance the effectiveness of RIT against cancer while allowing the therapeutic response to be monitored using activatable photoacoustic (PA) imaging in the second near-infrared region (NIR-II, 1000-1700 nm).
View Article and Find Full Text PDFFluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides a powerful tool for in vivo structural and functional imaging in deep tissue. However, the lack of biocompatible contrast agents with bright NIR-II emission has hindered its application in fundamental research and clinical trials. Herein, a liposome encapsulation strategy for generating ultrabright liposome-cyanine dyes by restricting dyes in the hydrophobic pockets of lipids and inhibiting the aggregation, as corroborated by computational modeling, is reported.
View Article and Find Full Text PDFFocused ultrasound (FUS)-induced blood-brain barrier (BBB) opening is crucial for enhancing glioblastoma (GBM) therapies. However, an in vivo imaging approach with a high spatial-temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green (ICG)-dopped microbubbles (MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy (PTT) against GBM.
View Article and Find Full Text PDFAdv Healthc Mater
December 2022
Nanoprobes (NPs) in the second near-infrared biowindow (NIR-II, 1000-1700 nm) are developed and widely used in cancer phototheranostics. However, most NIR-II NPs exhibit low phototheranostic efficiency due to their tedious synthetic routes, large particle sizes (>20 nm), and lack of active targeting properties. Here, miniature NIR-II NPs, named HSA-ICG-iRGD, for active-targeted NIR-II phototheranostics of brain tumors are reported.
View Article and Find Full Text PDFSemiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) under fluorescence imaging as a selective and non-invasive treatment approach has been widely applied for the therapy of cancer and bacterial infections. However, its treatment efficiency is hampered by high background fluorescence in the first near-infrared window (NIR-I, 700-900 nm) and oxygen-dependent photosensitizing activity of traditional photosensitizers. In this work, we employ gold nanoclusters (BSA@Au) with the second near-infrared (NIR-II, 1000-1700 nm) fluorescence and catalase-like activity as alternative photosensitizers to realize highly efficient PDT.
View Article and Find Full Text PDFObjective: The morphological and hemodynamic characterization of the microvascular network around the gastrointestinal (GI) tract can be of significant clinical value for the early diagnosis and treatment of GI tract cancer. Ultrasound localization microscopy (ULM) imaging has been demonstrated to be capable of resolving the microvascular network. However, the endoscopic application of ULM imaging techniques is still unknown.
View Article and Find Full Text PDFNear-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups.
View Article and Find Full Text PDFCellular responses to nanoparticles (NPs) have been largely studied in cell populations, providing averaged values that often misrepresent the true molecular processes that occur in the individual cell. To understand how a cell redistributes limited molecular resources to achieve optimal response and survival requires single-cell analysis. Here we applied multiplex single molecule-based fluorescence hybridization (fliFISH) to quantify the expression of 10 genes simultaneously in individual intact cells, including glycolysis and glucose transporter genes, which are critical for restoring and maintaining energy balance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
The application of an exogenous polymer matrix to construct aggregation-induced emission (AIE) nanoprobes promotes the utility of AIE luminogens (AIEgens) in diagnosing brain diseases. However, the limited fluorescence (FL) and low active-targeting abilities of AIE-based nanoprobes impede their imaging application. Here, we employed endogenous albumin as an effective matrix to encapsulate AIEgens to enhance FL quantum yield (QY) and active-targeting ability.
View Article and Find Full Text PDF