Publications by authors named "DeGrado W"

Generating stimulus-responsive, allosteric signaling is a significant challenge in protein design. In natural systems like bacterial histidine kinases (HKs), signal transduction occurs when ligand binding initiates a signal that is amplified across biological membranes over long distances to induce large-scale rearrangements and phosphorylation relays. Here, we ask whether our understanding of protein design and multi-domain, intramolecular signaling has progressed sufficiently to enable engineering of a HK with tunable components.

View Article and Find Full Text PDF

Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections.

View Article and Find Full Text PDF

Proximity-enhanced chemical cross-linking is an invaluable tool for probing protein-protein interactions and enhancing the potency of potential peptide and protein drugs. Here, we extend this approach to covalently stabilize large macromolecular assemblies. We used SuFEx chemistry to covalently stabilize an 18-subunit pore-forming complex, CsgG:CsgF, consisting of nine CsgG membrane protein subunits that noncovalently associate with nine CsgF peptides.

View Article and Find Full Text PDF

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle.

View Article and Find Full Text PDF

Expansion of intronic GGGGCC repeats in the gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins.

View Article and Find Full Text PDF
Article Synopsis
  • * Current methods to predict the changes in binding energy (ΔΔG) due to mutations are often imprecise, but recent developments in protein language models (PLMs) show promise for better predictions by using both sequence and structural information.
  • * The new model, ProBASS, utilizes advanced PLMs to accurately predict the effects of mutations on PPI binding affinity, achieving a high correlation with experimental ΔΔG values and outperforming existing methods, paving the way for advancements in protein engineering and design.
View Article and Find Full Text PDF

Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloids in a conformationally specific manner are lacking.

View Article and Find Full Text PDF

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear.

View Article and Find Full Text PDF

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although G-protein coupled receptor-mediated integrin activation has been extensively studied in non-adherent migratory cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent stationary cells such as airway smooth muscle. Here we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families respectively, to enhance adhesion of muscle to the matrix.

View Article and Find Full Text PDF

The de novo design of small molecule-binding proteins has seen exciting recent progress; however, high-affinity binding and tunable specificity typically require laborious screening and optimization after computational design. We developed a computational procedure to design a protein that recognizes a common pharmacophore in a series of poly(ADP-ribose) polymerase-1 inhibitors. One of three designed proteins bound different inhibitors with affinities ranging from <5 nM to low micromolar.

View Article and Find Full Text PDF

Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has the potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking the binding modes and motifs of natural TM interaction partners.

View Article and Find Full Text PDF

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC values ranging from 0.

View Article and Find Full Text PDF

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry.

View Article and Find Full Text PDF

The de novo design of small-molecule-binding proteins has seen exciting recent progress; however, the ability to achieve exquisite affinity for binding small molecules while tuning specificity has not yet been demonstrated directly from computation. Here, we develop a computational procedure that results in the highest affinity binders to date with predetermined relative affinities, targeting a series of PARP1 inhibitors. Two of four designed proteins bound with affinities ranging from < 5 nM to low μM, in a predictable manner.

View Article and Find Full Text PDF

Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloid in a conformationally specific manner are lacking.

View Article and Find Full Text PDF

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of much current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry.

View Article and Find Full Text PDF

The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined.

View Article and Find Full Text PDF

Tissue folding generates structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, the numerous finger-like protrusions that are essential for nutrient absorption. However, the molecular and mechanical mechanisms driving the initiation and morphogenesis of villi remain a matter of debate.

View Article and Find Full Text PDF

Selective proton transport through proteins is essential for forming and using proton gradients in cells. Protons are conducted along hydrogen-bonded 'wires' of water molecules and polar side chains, which, somewhat surprisingly, are often interrupted by dry apolar stretches in the conduction pathways, inferred from static protein structures. Here we hypothesize that protons are conducted through such dry spots by forming transient water wires, often highly correlated with the presence of the excess protons in the water wire.

View Article and Find Full Text PDF

Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer's disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-β amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance.

View Article and Find Full Text PDF

Fungal infections cause more than 1.5 million deaths a year. Due to emerging antifungal drug resistance, novel strategies are urgently needed to combat life-threatening fungal diseases.

View Article and Find Full Text PDF

In neurodegenerative diseases, proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ. Here, we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid-binding dyes to identify six distinct different conformational strains in vitro, as well as amyloid-β (Aβ) deposits in different transgenic mouse models.

View Article and Find Full Text PDF

Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking binding modes and motifs of natural TM interaction partners.

View Article and Find Full Text PDF

Unlabelled: In neurodegenerative diseases proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations . Here we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid binding dyes to identify six distinct different conformational strains , as well as Aβ deposits in different transgenic mouse models.

View Article and Find Full Text PDF

The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.

View Article and Find Full Text PDF