Publications by authors named "DeBenedetti W"

The properties of photoemission electron sources determine the ultimate performance of a wide class of electron accelerators and photon detectors. To date, all high-efficiency visible-light photocathode materials are either polycrystalline or exhibit intrinsic surface disorder, both of which limit emitted electron beam brightness. In this Letter, we demonstrate the synthesis of epitaxial thin films of Cs_{3}Sb on 3C-SiC (001) using molecular-beam epitaxy.

View Article and Find Full Text PDF

High-performance photocathodes for many prominent particle accelerator applications, such as x-ray free-electron lasers, cannot be grown in situ. These highly reactive materials must be grown and then transported to the electron gun in an ultrahigh-vacuum (UHV) suitcase, during which time monolayer-level oxidation is unavoidable. Thin film CsSb photocathodes were grown on a variety of substrates.

View Article and Find Full Text PDF

Exfoliation of large-area monolayers is important for fundamental research and technological implementation of transition-metal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale.

View Article and Find Full Text PDF

Researchers around the world have observed the formation of molecularly ordered structures of unknown origin on the surface of titanium dioxide (TiO) photocatalysts exposed to air and solution. Using a combination of atomic-scale microscopy and spectroscopy, we show that TiO selectively adsorbs atmospheric carboxylic acids that are typically present in parts-per-billion concentrations while effectively repelling other adsorbates, such as alcohols, that are present in much higher concentrations. The high affinity of the surface for carboxylic acids is attributed to their bidentate binding.

View Article and Find Full Text PDF

Toward a truly photostable PbSe quantum dot (QD), we apply the thick-shell or "giant" QD structural motif to this notoriously environmentally sensitive nanocrystal system. Namely, using a sequential application of two shell-growth techniques-partial-cation exchange and successive ionic layer adsorption and reaction (SILAR)-we are able to overcoat the PbSe QDs with sufficiently thick CdSe shells to impart new single-QD-level photostability, as evidenced by suppression of both photobleaching and blinking behavior. We further reveal that the crystal structure of the CdSe shell (cubic zinc-blende or hexagonal wurtzite) plays a key role in determining the photoluminescence properties of these giant QDs, with only cubic nanocrystals sufficiently bright and stable to be observed as single emitters.

View Article and Find Full Text PDF

Chemists have long preferred the Si(111) surface for chemical functionalization, as a simple aqueous etch can be used to produce ideal, atomically flat H/Si(111) surfaces for subsequent reactions. In contrast, industry-standard etches produce rough H/Si(100) surfaces terminated by nanohillocks. The recent discovery of an aqueous etch that produces morphologically controlled H/Si(100) surfaces with a near atomically flat or "half-flat" morphology challenges the assumption that Si(111) is an inherently preferable starting point for chemical functionalization.

View Article and Find Full Text PDF

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states.

View Article and Find Full Text PDF

Dioxides of methylthiourea (methylaminoiminomethanesulfinic acid, MAIMSA) and dimethylthiourea (dimethylaminoiminomethanesulfinic acid, DMAIMSA) were synthesized and, together with thiourea dioxide (aminoiminomethanesulfinic acid, AIMSA), were studied with respect to their decompositions and hydrolyses in basic aqueous media. All three were stable in acidic media and existed as zwitterions with the positive charge spread out on the 4-electron 3-center N-C-N skeleton and the negative charge delocalized over the two oxygen atoms. All three are characterized by long and weak C-S bonds that are easily cleaved in polar solvents through a nucleophilic attack on the positively disposed carbon center, followed by cleavage of the C-S bond.

View Article and Find Full Text PDF

Six new inorganic-organic salts, all containing iodobismuthate anions and d-metal coordination cations, were synthesized solvothermally from reactions of bismuth iodide, a transition metal (M) nitrate salt (M = Co, Fe or Zn), and a heterocyclic, chelating organic ligand: 1,10-phenanthroline (1,10-phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (TMphen), or 2,2':6',2''-terpyridine (tpy). All six compounds were structurally analyzed by single crystal X-ray diffraction, including variable temperature crystallographic analysis to monitor for structural changes. Furthermore, those containing novel anions and achieved in high yield were additionally characterized by solid-state UV visible spectroscopy at room temperature.

View Article and Find Full Text PDF