Publications by authors named "De-yi Wu"

Magnetite core/zirconia shell nanocomposite (abbreviated as FeO@ZrO hereafter) was obtained using one-step co-precipitation method and its performance for removal of fluoride ion from water was studied. The results showed that the Langmuir maximum adsorption capacity of fluoride ion by FeO@ZrO was 35.46 mg·g, which was far higher than those of magnetite, activated alumina and activated carbon.

View Article and Find Full Text PDF

We studied the loading of -(2-Aminoethyl)-3-aminopropyl trimethoxy silane from aqueous solution as a monolayer on magnetite nanoparticles and examined the phosphate removal performance of the generated adsorbent (silane monolayer on magnetite nanoparticles, abbreviated as MSMNPs). The results indicate that silane monolayer adsorption on magnetite nanoparticles occurred at low concentrations (equilibrium silane concentration <300 mg·L) and a~100% surface monolayer coverage by silane could be established at a temperature ≥ 90℃ or a NaCl concentration ≥ 0.1 mol·L.

View Article and Find Full Text PDF

Zirconium modified diatomite was obtained by modifying raw diatomite with zirconium and the mass fraction of zirconia was 12.39% in the obtained material, which was proved to be amorphous via XRD. SEM images showed that porous floccules covered the surface of diatomite after modification and the specific surface area of the zirconium modified diatomite was 75.

View Article and Find Full Text PDF

A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.

View Article and Find Full Text PDF

Activated alumina was studied for removing phosphate from water, and the recovery of adsorbed phosphate on activated aluminum oxide was also tested. Phosphate solution was prepared using distilled water, tap water and Luoshijiang River water, respectively. All the phosphate adsorption tests using activated alumina were proved to be well fitted with Langmuir isotherm and the respective maximum adsorption amount were 20.

View Article and Find Full Text PDF

Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification.

View Article and Find Full Text PDF

Harmful algal bloom (HAB) occurs frequently and causes serious damage. To study the early-warning and prediction technology of HAB is of significance for the early-warning and prediction, ecological control, and disaster prevention and mitigation of HAB. This paper reviewed the research progress in the early-warning and prediction technologies of HAB, including transport prediction, specific factors critical value prediction, data-driven model, and ecological math model, and evaluated the advantages and disadvantages of these four types of technologies.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of current density, gap between electrodes, urine dosage, dilution and hydrolysis on phosphate removal from human urine by electrocoagulation technique using iron as electrodes. It was shown that, although a high current density and a long electrolysis time favored the removal of phosphate, an appropriate value for these two parameters can be obtained by taking into account the consumption of energy and iron in addition to P removal. In this study, current density 40 mA/cm2 and electrolysis time 20 min were shown to be optimal for 1.

View Article and Find Full Text PDF

Zeolite synthesized from fly ash (ZFA) without modification is not efficient for the purification of NH4+ and phosphate at low concentrations that occur in real effluents, despite the high potential removal capacity. To develop an effective technique to enhance the removal efficiency of ammonium and phosphate at low concentrations, ZFA was modified with acid treatment and the simultaneous removal of ammonium and phosphate in a wide range of concentration was investigated. It was seen that when compared with untreated ZFA, only the treatment by 0.

View Article and Find Full Text PDF

Abstract: Few studies have dealt on the evaluation of volatilization and decomposition reactions of dioxins from sediment by oxygen free pyrolysis. In this study, the performance of pyrolysis on the removal of dioxins from sediment was investigated. Dioxin concentrations of the raw sediment and the solid residues after pyrolysis were analyzed at different conditions.

View Article and Find Full Text PDF

In the present study, the chronic toxicity of dietary copper to Moina monogolica Daday was investigated. Microalgal growth inhibition tests were conducted for 96 h with the green algae Chlorella pyrenoidosa exposed to copper. The 96-h median effective concentration (95% confidence interval) was 509.

View Article and Find Full Text PDF

Characteristics of simultaneous removal of ammonium and phosphate from wastewater by zeolite synthesized from fly ash was investigated. The amount of ammonium and phosphate removed by zeolitized fly ash changed with time, and approached to a constant value after adsorption time of 24h was reached. The amount of ammonium and phosphate removed also increased with the rise in the amount of zeolite added, but slackened above the solid/liquid ratio of 8 g x L(-1).

View Article and Find Full Text PDF

The sorption of a triazol derivative, 1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents.

View Article and Find Full Text PDF