Publications by authors named "De-Yun Cui"

New Delhi Metallo-β-lactamase-1 (NDM-1), a Zn (II)-dependent enzyme, can catalyze the hydrolysis of almost all β-lactam antibiotics including carbapenems, resulting in bacterial antibiotic resistance, which threatens public health globally. Based on our finding that Hdedpa is as an efficient NDM-1 inhibitor, a series of Hdedpa derivatives was systematically prepared. These compounds exhibited significant activity against NDM-1, with IC values 0.

View Article and Find Full Text PDF

Bacterial infections cause various life-threatening diseases and have become a serious public health problem due to the emergence of drug-resistant strains. Thus, novel antibiotics with excellent antibacterial activity and low cytotoxicity are urgently needed. Here, three series of novel cationic deacetyl linezolid amphiphiles bearing one lipophilic alkyl chain and one non-peptidic amide bond were synthesized and tested for antimicrobial activities.

View Article and Find Full Text PDF

The emergence of antibiotic drug (like carbapenem) resistance is being a global crisis. Among those resistance factors of the β-lactam antibiotics, the metallo-β-lactamases (MBLs) is one of the most important reasons. In this paper, a series of cyclic dithiocarbamate compounds were synthesized and their inhibition activities against MBLs were initially tested combined with meropenem (MEM) by in vitro antibacterial efficacy tests.

View Article and Find Full Text PDF

There is an urgent need to identify new antibiotics with novel mechanisms that combat antibiotic resistant bacteria. Herein, a series of chalcone derivatives that mimic the essential properties of cationic antimicrobial peptides were designed and synthesized. Antibacterial activities against drug-sensitive bacteria, including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Salmonella enterica, as well as clinical multiple drug resistant isolates of methicillin-resistant S.

View Article and Find Full Text PDF

The emergence of infectious diseases caused by pathogenic bacteria is widespread. Therefore, it is urgently required to enhance the development of novel antimicrobial agents with high antibacterial activity and low cytotoxicity. A series of novel dialkyl cationic amphiphiles bearing two identical length lipophilic alkyl chains and one non-peptidic amide bond were synthesized and tested for antimicrobial activities against both Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF