Publications by authors named "De-Xin Guan"

Water use efficiency (WUE) of five dominant tree species (, , , , and ) was estimated using the stable carbon isotope method in a broadleaved Korean pine forest in Changbai Mountains. Leaf carbon (C), nitrogen (N), and phosphorus (P) contents were measured to analyze nutrient utilization of the dominant species. The relationship between WUE and leaf nutrient contents was systematically assessed.

View Article and Find Full Text PDF

Water use efficiency (WUE) is an objective indicator of plant water use, the research of which is helpful to understand the carbon-water coupling mechanism in terrestrial ecosystems. We investigated WUE of dominant tree species in the succession series of broad-leaved Korean pine forests in Changbai Mountain (middle-aged poplar-birch secondary forest, mature poplar-birch secondary forest, broad-leaved Korean pine forest) by using stable carbon isotope technology. The WUE of three forests under different succession stages decreased in order of broad-leaved Korean pine forest > middle-aged poplar-birch secondary forest > mature poplar-birch secondary forest.

View Article and Find Full Text PDF

The aggravation of global nitrogen deposition may change plant water utilization and affect plant growth. Understanding the changes of vegetation water consumption under nitrogen deposition is of great significance for simulating and predicting the evolution of each component of forest hydrological cycle. We used the hydrogen and oxygen isotope tracer method to analyze water consumption source, quantity and law of (Qm), (Fm) and (Ta), the dominant species in broadleaved Korean pine forest of Changbai Mountain, under different add amounts of nitrogen [low nitrogen addition group (11.

View Article and Find Full Text PDF

Compound-specific isotope analysis (CSIA) can precisely determine the carbon isotopic composition (δC) of specific compounds in a complex substrate. The δC values in tree non-structural carbohydrates (NSC) compounds, . sugars, organic acids, and sugar alcohols, measured via CSIA could help tracing the newly assimilated photosynthate during carbon transfer and exchange with atmosphere.

View Article and Find Full Text PDF

To understand the dynamics of temperate forest in Northeast Asia and its response to climate change under the scenario of global change, we examined the temporal and spatial changes of normalized difference vegetation index (NDVI) and their correlation with temperature and precipitation of Changbai Mountain Nature Reserve in the growing season during 2001 and 2018, based on the remote sensing database of MODIS with a resolution of 250 m, land surface temperature data with a resolution of 1 km and meteorological data in the studied and surrounding area. The results showed that, in the growing season of 2001-2018, the averaged NDVI value of the study area was 0.711.

View Article and Find Full Text PDF

Carbon isotope in tree ring is an effective indicator of climate and environmental change. However, few studies have analyzed the indication effect of tree ring carbon isotope on net primary productivity (NPP) of forests. Based on meteorological factors of growing seasons, we analyzed the variation trend and the relationship between the tree ring δC chronosequence of Korean pine (Pinus koraiensis) and net primary productivity (NPP) of Korean pine in Changbai Mountain.

View Article and Find Full Text PDF
Article Synopsis
  • From 1956 to 2018, scientists studied Changbai Mountain in three main stages: starting slow, growing, and then speeding up their research.
  • The research can be grouped into five main areas, focusing a lot on forests, volcanoes, environmental changes, and different animal and microbial studies.
  • In the last 20 years, studies have mainly looked at how ecosystems work, forest management, and the effects of climate, and it's expected that new topics like biodiversity and volcanic activities will become important in the future.
View Article and Find Full Text PDF

Mesophyll conductance (g) refers to the diffusion capacity of CO inside mesophyll cells, which is the reciprocal of resistance of mesophyll cells. In the early stage of photosynthesis research, mesophyll diffusion resistance to CO was usually assumed to be zero, namely the g was infinite. In recent studies, however, the g was found to be limited and changed with external environments.

View Article and Find Full Text PDF

We integrated the meteorological records from 36 national weather stations and CN05.1 gridded daily observation dataset to analyze the climate change characteristics of Changbai Mountain eco-functional area. Linear tendency estimation, Mann-Kendall mutation test, cumulative anomaly method and Morlet wavelet analysis were used to investigate the temporal and spatial variation of temperature (annual temperature, seasonal temperature, extreme temperature), moisture (annual precipitation, seasonal precipitation, relative humidity), radiation (sunshine duration, sunshine percentage) and wind speed from 1961 to 2016.

View Article and Find Full Text PDF

Stable carbon isotope composition can accurately indicate ecosystem carbon cycling and provide key information for the study of the influence of forest succession on the carbon cycling and carbon sequestration potential. We measured the δC values and carbon and nitrogen contents of leaf, trunk, root, litter, and soil along a forest successional gradient in Changbai Mountain, which included a middle-aged poplar-birch secondary forest, a mature poplar-birch secondary forest, and an old-growth broad-leaved Korean pine forest. The results showed that leaf δC reduced with their position from the upper canopy to lower canopy, bark δC was less than xylem, fine root δC was less than course root.

View Article and Find Full Text PDF

A total of eight clear-sky and eight cloudy-sky parameterized models for estimating daytime downward longwave radiation were evaluated by using the meteorological data measured in the Changbai Mountains region, Northeast China. The results indicated that the Satterlund model performed better in estimating clear-sky downward longwave radiation, and the bias (BIAS) and root mean square error (RMSE) were -23.34 and 28.

View Article and Find Full Text PDF

Satellite-based precipitation product plays a significant role in analyzing spatial pattern of precipitation. TRMM 3B42 (3B42), as one of important precipitation products, is a key forcing factor for ecological, climate and hydrological models with its sufficient spatial and temporal scales. At present, there is still limited knowledge of accuracy and error structure of new version 3B42 V7, especially the lack of evaluating its accuracy in regions of mid-high latitudes, which restricts its application in the field of ecology, climate and hydrology.

View Article and Find Full Text PDF

Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis.

View Article and Find Full Text PDF

Based on the measurements of eddy flux and micrometeorological factors, this paper analyzed the diurnal and seasonal variations of energy balance over Horqin meadow. The results showed that annual energy balance ratio (EBR) of the eddy covariance system was 0.77, and EBR was biggest in growing season, middle in bare soil period and smallest in snow-covered period.

View Article and Find Full Text PDF

Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors.

View Article and Find Full Text PDF

The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration.

View Article and Find Full Text PDF

Based on the measurement data of water vapor flux by open-path eddy covariance system and of the micrometeorological factors in broad-leaved Korean pine forest in Changbai Mountains during the snow cover period from 2002 to 2005, this paper analyzed the dynamics of snow cover evaporation and the relationships between the evaporation and meteorological factors. The energy balanced ratio during the snow cover period was 79. 9% , and the latent heat flux accounted for 21.

View Article and Find Full Text PDF

To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

View Article and Find Full Text PDF

By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend.

View Article and Find Full Text PDF

Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently.

View Article and Find Full Text PDF

Based on the daily meteorological data from 72 weather stations from 1961-2003, a quantitative analysis was conducted on the spatiotemporal changes of the potential evapotranspiration in the Plain. The Penman-Monteith model was applied to calculate the potential evapotranspiration; the Mann-Kendall test, accumulative departure curve, and climatic change rate were adopted to analyze the change trend of the evapotranspiration; and the spatial analysis function of ArcGIS was used to detect the spatial distribution of the evapotranspiration. In 1961-2003, the mean annual potential evapotranspiration in the Plain was 330 - 860 mm, and presented an overall decreasing trend, with the high value appeared in southwest region, low value in surrounding areas of southwest region, and a ring-belt increasing southwestward.

View Article and Find Full Text PDF

Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River.

View Article and Find Full Text PDF

To investigate the effects of climate change on canopy transpiration, a process-based carbon and water coupling multi-layer model was verified, and used to simulate the canopy transpiration over a broad-leaved Korean pine forest in Changbai Mountains. This multi-layer model could well estimate canopy transpiration. The simulated values fitted well with the measured data based on eddy covariance method.

View Article and Find Full Text PDF

Based on the 2005-2008 observation data of canopy interception in larch plantation in eastern Liaoning Province, and by using Gash model, the interception process was simulated. In the plantation, there was a significant positive correlation between throughfall and rainfall (R2 = 0.98), and the annual throughfall accounted for 77.

View Article and Find Full Text PDF

A snow-shading experiment was conducted in a broad-leaved Korean pine forest in Changbai Mountains from 2004 to 2007 to observe the soil temperature with and without snow cover. Snow cover played an important buffering role in the change of soil temperature, namely, slowed down the change process of soil temperature. The effect of snow cover on preserving soil heat was quite obvious in shallow soil layer (0-20 cm), and enhanced with increasing snow depth.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2n1j12q5seu1t3u3gkabebf3sg8ldim1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once