Publications by authors named "De-Chao Yang"

Understanding the pharmacokinetics of prodrugs necessitates quantitative, noninvasive, and real-time monitoring of drug release, despite its difficulty. Ratiometric photoacoustic (PA) imaging, a promising deep tissue imaging technology with a unique capacity for self-calibration, can aid in solving this problem. Here, for the first time, a methylamino-substituted Aza-BODIPY (BDP-N) and the chemotherapeutic drug camptothecin (CPT) are joined via a disulfide chain to produce the molecular theranostic prodrug (BSC) for real-time tumor mapping and quantitative visualization of intratumoral drug release using ratiometric PA imaging.

View Article and Find Full Text PDF

Increasing Investigations show that photosensitizers (PSs) which target mitochondria are useful for enhancing photodynamic therapy (PDT) efficacy. Herein, we carefully designed and synthesized four triphenylphosphonium (TPP)-modified boron dipyrromethene (BDP)-based PSs through Cu(I)-assisted "3+2" cycloaddition reaction. All of them exhibit intense red light absorption with maxima between 659 and 663 nm, considerable fluorescence emission with quantum yields of 0.

View Article and Find Full Text PDF

Herein, we fabricate a multifunctional molecular prodrug BAC where the chemotherapeutical agent camptothecin (CPT) is linked with a boron dipyrromethene (BODIPY)-based photosensitizer by an azobenzene chain which is sensitive to over-expressed azoreductase in hypoxic tumor cells. This prodrug was further loaded into biodegradable monomethoxy poly(ethylene glycol)-b-poly(caprolactone) (mPEG-b-PCL) to improve its solubility and tumor accumulation. The formed BAC nanoparticles (BAC NPs) can destroy aerobic tumor cells with relatively short distance from blood vessels by photodynamic therapy (PDT) under illumination.

View Article and Find Full Text PDF

Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues.

View Article and Find Full Text PDF

Combination treatments are more effective than conventional monotherapy in combating cancer. Herein, a multifunctional prodrug was rationally engineered and prepared by the conjugation of a boron dipyrromethene (BDP)-based photosensitizer (PS) to the active site of the chemotherapeutic drug camptothecin (CPT) via a phenyl benzoate group. After modification, the cytotoxicity of CPT was locked.

View Article and Find Full Text PDF

Coencapsulation of chemotherapeutic agents and photosensitizers into nanocarriers can help to achieve a combination of chemotherapy and photodynamic therapy for superior antitumor effects. However, precise on-demand drug release remains a major challenge. In addition, the loaded photosensitizers usually tend to aggregate, which can significantly weaken their fluorescent signals and photodynamic activities.

View Article and Find Full Text PDF

Development of the drug with high therapeutic efficacy and low toxicity is crucial to cancer ablation. In this study, we have demonstrated a red light-responsive prodrug BDP-TK-CPT by connecting the chemotherapeutic agent camptothecin with a boron dipyrromethene (BDP)-based photosensitizer via a reactive oxygen species (ROS)-labile thioketal chain. Since camptothecin is modified by a BDP-based macrocycle at the active site, the formed prodrug displays an extremely low toxicity in dark.

View Article and Find Full Text PDF

Here, we have synthesized and characterized a novel activatable photosensitizer (PS) 8a in which two well-designed boron dipyrromethene (BODIPY) derivatives are utilized as the photosensitizing fluorophore and quencher respectively, which are connected by a disulfide linker via two successive Cu (І) catalyzed click reactions. The fluorescence emission and singlet oxygen production of 8a are suppressed via intramolecular fluorescence resonance energy transfer (FRET) from the excited BODIPY-based PS part to quencher unit, but both of them can be simultaneously switched on by cancer-related biothiol glutathione (GSH) in phosphate buffered saline (PBS) solution with 0.05% Tween 80 as a result of cleavage of disulfide.

View Article and Find Full Text PDF

In this study, we demonstrate a novel H₂O₂ activatable photosensitizer (compound ) which contains a diiodo distyryl boron dipyrromethene (BODIPY) core and an arylboronate group that quenches the excited state of the BODIPY dye by photoinduced electron transfer (PET). The BODIPY-based photosensitizer is highly soluble and remains nonaggregated in dimethyl sulfoxide (DMSO) as shown by the intense and sharp Q-band absorption (707 nm). As expected, compound exhibits negligible fluorescence emission and singlet oxygen generation efficiency.

View Article and Find Full Text PDF