Publications by authors named "De Sun"

Background: Elucidating the genetic variation underlying phenotypic diversity will facilitate improving production performance in livestock species. The Tibetan sheep breed in China holds significant historical importance, serving as a fundamental pillar of Qinghai's animal husbandry sector. The Plateau-type Tibetan sheep, comprising 90% of the province's population, are characterized by their tall stature and serve as the primary breed among Tibetan sheep.

View Article and Find Full Text PDF

Living acute brain slices provide a practical platform for imaging sialylation in human brain pathology. However, the limited lifespan of acute brain slices has impeded the use of metabolic glycan labeling (MGL), which requires long-term incubation of clickable unnatural sugars such as -azidoacetylmannosamine (ManNAz) to metabolically incorporate azides into sialoglycans. Here, we report a fast variant of MGL (fMGL), in which ManNAz-6-phosphate enables efficient azidosugar incorporation within 12 h by bypassing the bottleneck step in the sialic acid biosynthesis pathway, followed by click-labeling with fluorophores and imaging of sialoglycans in acute brain slices from mice and human patients.

View Article and Find Full Text PDF

Ingenious microstructure construction and appropriate composition selection are effective strategies for achieving enhanced performance of photothermal materials. Herein, a broccoli-like hierarchical nickel black@graphene (Ni@Gr) membrane for solar-driven desalination was prepared by a one-step electrochemical method, which was carried out simultaneously with the electrochemical exfoliation of graphene and the co-deposition of Ni@Gr material. The bionic hierarchical structure and the chemical composition of the Ni@Gr membrane increased the sunlight absorption (90.

View Article and Find Full Text PDF

Copy number variation (CNV) is a genetic structural polymorphism important for phenotypic diversity and important economic traits of livestock breeds, and it plays an important role in the desired genetic variation. This study used whole genome sequencing to detect the CNV variation in the genome of 6 local Tibetan sheep groups. We detected 69,166 CNV events and 7230 copy number variable regions (CNVRs) after merging the overlapping CNVs, accounting for 2.

View Article and Find Full Text PDF

We have developed a simple time-bin phase encoding quantum key distribution system, using the optical injection locking technique. This setup incorporates both the merits of simplicity and stability in encoding, and immunity to channel disturbance. We have demonstrated the field implementation of quantum key distribution over long-distance deployed aerial fiber automatically.

View Article and Find Full Text PDF

Metabolic labeling with clickable noncanonical amino acids has enabled nascent proteome profiling, which can be performed in a cell-type-specific manner. However, nascent proteomics in an intercellular communication-dependent manner remains challenging. Here we develop communication-activated profiling of protein expression (CAPPEX), which integrates the LuxI/LuxR quorum sensing circuit with the cell-type-specific nascent proteomics method to enable selective click-labeling of newly synthesized proteins in a specific bacterium upon receiving chemical signals from another reporter bacterium.

View Article and Find Full Text PDF

Objectives: To evaluate the sonographic features of secondary involvement of skin and subcutaneous tissues by hematologic malignancies.

Methods: A review of the ultrasound and pathology databases yielded 10 cases with 13 skin and subcutaneous tissue lesions secondary to hematologic neoplasms, which were confirmed by pathology. We used ultrasound to assess the number, location, size, depth of involvement, echogenicity, and vascularity of the lesions.

View Article and Find Full Text PDF

It was estimated that 70% of patients with colorectal cancer were found to have viable exfoliated malignant cells in adjacent intestinal lumen. Exfoliated malignant cells had been reported to implant on raw surfaces, such as polypectomy site, anal fissure, anal fistula, hemorrhoidectomy wound, and anastomotic suture line. Tumors at anastomosis could be classified into four groups: local recurrence, local manifestation of widespread metastasis, metachronous carcinogenesis, and implantation metastasis.

View Article and Find Full Text PDF

We report here the development of clickable and highly near-infrared (NIR) fluorescent lanthanide (Ln) complexes for bioorthogonal labeling of biomolecules. These azide- or alkyne-functionalized Ln complexes are hydrophilic and fluorogenic, exhibiting a strong increase of NIR fluorescence upon conjugation with biomolecules. Metabolic labeling of biomolecules with azide or alkyne, followed by click labeling with the Ln complexes, enables NIR fluorescence (NIRF) imaging of DNA, RNA, proteins, and glycans in cells.

View Article and Find Full Text PDF

Metabolic labeling of glycans with clickable unnatural sugars has enabled glycan analysis in multicellular systems. However, cell-type-specific labeling of glycans in vivo remains challenging. Here we develop genetically encoded metabolic glycan labeling (GeMGL), a cell-type-specific strategy based on a bump-and-hole pair of an unnatural sugar and its matching engineered enzyme.

View Article and Find Full Text PDF

A main determinant of the spatial resolution of live-cell super-resolution (SR) microscopes is the maximum photon flux that can be collected. To further increase the effective resolution for a given photon flux, we take advantage of a priori knowledge about the sparsity and continuity of biological structures to develop a deconvolution algorithm that increases the resolution of SR microscopes nearly twofold. Our method, sparse structured illumination microscopy (Sparse-SIM), achieves ~60-nm resolution at a frame rate of up to 564 Hz, allowing it to resolve intricate structures, including small vesicular fusion pores, ring-shaped nuclear pores formed by nucleoporins and relative movements of inner and outer mitochondrial membranes in live cells.

View Article and Find Full Text PDF

Mammalian cell cycle is a central process for tissue growth and maintenance. Protein O-linked β--acetylglucosamine (O-GlcNAc) modification has been found to occur on several important cell cycle regulators. However, the O-GlcNAcylated proteome has not been extensively profiled during cell cycle progression.

View Article and Find Full Text PDF

Expansion microscopy (ExM) allows super-resolution imaging on conventional fluorescence microscopes, but has been limited to proteins and nucleic acids. Here we develop click-ExM, which integrates click labeling into ExM to enable a 'one-stop-shop' method for nanoscale imaging of various types of biomolecule. By click labeling with biotin and staining with fluorescently labeled streptavidin, a large range of biomolecules can be imaged by the standard ExM procedure normally used for proteins.

View Article and Find Full Text PDF

This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.

View Article and Find Full Text PDF

Despite numerous advances in cancer treatment, the global prevalence and cancer-related mortality remain high. Understanding tumor initiation and progression mechanisms are critical as it will lead to the development of interventions for improving the prognosis of cancer patients. The roles of long noncoding RNAs (lncRNAs) in cancer have attracted immense research interest.

View Article and Find Full Text PDF

In the electrofiltration process, membrane conductivity plays a decisive role in improving the antifouling performance of the membrane. In this paper, combining the preparation of graphene (Gr) with the fabrication of the Gr layer on the surface of a polyaniline (PANI) membrane, a graphene/PANI (Gr/PANI) conductive membrane was prepared creatively by the one-step electrochemical method. The properties of the as-prepared Gr/PANI membrane were studied systematically.

View Article and Find Full Text PDF

Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling.

View Article and Find Full Text PDF

Objective: This study investigated the effects of 1,3-1,6 beta-glucan added to the diet of Haidong chicks reared under hypoxic conditions, to ascertain the growth performances, immunity and intestinal morphology changes.

Methods: A total of 750 chicks were divided into five groups and fed diets containing 0.5g/kg, 1.

View Article and Find Full Text PDF

Background: Interstitial lung disease (ILD) is a common complication of connective tissue disease (CTD) and a leading cause of morbidity and mortality. There are various lung ultrasound (LUS) scoring systems with different lung intercostal spaces (LIS). The purpose of this meta-analysis was to find a simplified LUS method for the assessment of CTD-ILD.

View Article and Find Full Text PDF

Polymer film materials with smart wetting surfaces can be widely used in aerospace, petrochemicals, shipbuilding, automotives, energy saving, environmental protection and other fields. Here, the wettability of conjugated polymer poly(3-hexylthiophene) (P3HT) films was accurately controlled by an electric field polarization technique, and transition of the films from being hydrophobic to hydrophilic was successfully achieved. The water contact angle of the P3HT films could be changed from 105.

View Article and Find Full Text PDF

Metabolic labeling of glycans with bioorthogonal reporters has been widely used for glycan imaging and glycoproteomic profiling. One of the intrinsic limitations of metabolic glycan labeling is the lack of cell-type selectivity. The recently developed liposome-assisted bioorthogonal reporter (LABOR) strategy provides a promising means to overcome this limitation, but the mechanism of LABOR has not been investigated in detail.

View Article and Find Full Text PDF

Membrane voltage is an important biophysical signal that underlies intercellular electrical communications. A fluorescent voltage indicator is presented that enables the investigation of electrical signaling at high spatial resolution. The method is built upon the site-specific modification of microbial rhodopsin proteins with organic fluorophores, resulting in a hybrid indicator scaffold that is one of the most sensitive and fastest orange-colored voltage indicators developed to date.

View Article and Find Full Text PDF